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SUMMARY

In this thesis we study active matter systems using analytical and numerical ap-

proaches. Active matter consists of self-propelled components, converting stored or

ambient energy into systematic movement [1–3]. They are driven out of equilibrium

through the consumption and dissipation of energy by each of these active units,

violating the detailed balance condition and the equilibrium fluctuation-dissipation

relation. Examples of such systems are abound in nature, covering multiple length

scales, from motor proteins, cytoskeleton, motile cells, growing tissues to birds and

animals [2, 4–7].

Despite tremendous progress in the knowledge of collective properties of active

matter, the dynamical properties of non-interacting active particles are not yet fully

understood. Recent studies indicate how even a single active particle can display

qualitatively rich physics [8–14]. We develop an exact mapping of the path prob-

abilities of the active Brownian particles (ABP) in the presence of thermal bath

to configurational properties of extensible semiflexible polymers. Using a Laplace

transform of the governing Fokker-Planck equation of the active Brownian par-

ticle motion, we describe a direct method to derive exact expressions for all the

moments of the relevant dynamical variables in arbitrary dimensions. The ABPs

described above does not incorporate the possible stochasticity in the generation of

active speed. To study its influence, we first consider a stochastic speed generation

following an active Ornstein-Uhlenbeck process [15]. To explore the competition

between various time scales in the dynamics, we extend the Laplace transform of

Fokker-Planck equations to calculate exact time-dependent moments of dynamical

variables in arbitrary dimensions. We also consider a second model of active speed

fluctuations due to stochastic chemical processes generating the active speed [16]

and explore its dynamical behavior in arbitrary dimensions. The displacement dis-

tribution function in two-dimensions displays crossovers from Gaussian to bimodal

to a non-Gaussian unimodal behavior with increasing time. At longer times, the

distribution returns to the Gaussian behavior via another intermediate bimodal
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structure.

Next we consider the dynamics of cytoskeleton from two perspectives. The

gliding motion of cytoskeleton filaments on a motor protein assay has been used ex-

tensively in experiments to study dynamics of cytoskeletal filaments outside living

cells [17–21]. We begin by investigating the dynamics of a rigid filament in a motor

protein assay in one dimension. We model motor proteins as active harmonic link-

ers with their tails immobilized on a substrate. Their heads attach to the filament

stochastically to extend along it in a polar fashion. Thus, it exerts a force on the fil-

ament before detaching. The rate of extension and detachment are load-dependent.

Under elastic loading, we find the emergence of stable limit cycle oscillations of

the filament via a supercritical Hopf bifurcation with a change in activity and the

number of motor proteins. Numerical simulations of the system for a large number

of motor proteins show good agreement with the mean-field predictions. We fur-

ther investigate conformational dynamics of semiflexible cytoskeletal filaments in a

gliding assay. The conformations of the filament undergo a first-order phase transi-

tion from open-chain to spiral. They show a reentrant transition behavior in both

the active extension and turnover, defined as the ratio of attachment-detachment

rates. The size and shape of the polymer change non-monotonically along the phase

transition, and the relevant autocorrelation functions display a double-exponential

decay.

Finally, we consider the actomyosin cytoskeleton [22] within a coarse-grained

field-theoretic description. The actomyosin is known to show active contractility

and flows over a long time scale [23, 24]. We use a two component active fluid

model undergoing advection-diffusion and turnover. We consider the turnover rates

to be constant, stress dependent, and strain-rate dependent. In strain-rate depen-

dent turnover, the local extension (compression) increases (decreases) the active

to passive transformation favoring the passive (active) state. Depending on the

bare on-rate and Péclet number characterizing the active contractility, the system

shows a homogeneous steady-state and spatial pattern formation in the presence

or absence of a steady-state flow. The steady-state patterns show two different

viii
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possibilities – one in which the maxima of active and passive densities co-appear in

space; on the other, they segregate spatially.

In summary, we investigate active systems: from active particles to semiflexible

filaments driven by the activity of molecular motors to a two-component active fluid

model of cytoskeletal complex.
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[(d) − (f)] at Dr = 1.0 τ−1

u , v0 = 10.0 σ/τu and D = 0.1 σ2/τu for
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persistence length ℓp = 103ℓ̄. The length of trajectories considered
are L = 3ℓp [(a), (d)] 3.5ℓp [(b), (e)], 4ℓp [(c), (f)]. . . . . . . . . . . 34

2.15 (color online) Deviation from Gaussian nature in terms of K is shown
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Dr = 1.0 τ−1

u for v0 τu/σ = 0, 1, 3, 10. (b)Plot at v0 = 10 σ/τu
for Drτu = 1, 5, 10, 20. . . . . . . . . . . . . . . . . . . . . . . . . 38
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ABP. In these plots we used the initial active speed v1 = v̄P e and
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3.2 (color online) Speed fluctuation ⟨δv2⟩ as a function of time t/τr at
D̃v = 1 and γ̃v = 1 in 2d for Pe = 0.1(◦), 1(▽), 10(✸). The points
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tion of time t at Dvτr/v̄
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function of time t at Dvτr/v̄

2 = 1 and γvτr = 1 in 2d for Pe = 1,
0.1, 0.01. The lines depict Eq. (3.16) with the initial speed v1 = v0
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3.5 (color online) Time dependence of ⟨r2⟩/t in 2d, in the absence of
external force. The slow and fast relaxations of active speed are
considered in (a, b) γvτr ≪ 1, and (c, d) γvτr ≫ 1, respectively. The
points denote simulation results, the solid lines depict Eq. (3.23) with
d = 2, and the dashed lines depict Eq. (3.25). Parameter values used
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Dvτr/v̄
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and a ballistic-diffusive crossover at tIV /τr = 2000. (b) Parameters
used are γ̃v = γvτr = 2 × 103, D̃v = Dvτr/v̄
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v0/v̄ = 2 × 103 (solid line), 10 (dashed line). The solid line shows
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3.7 (color online) Directed persistent motion. Mean squared displace-
ments ⟨r2⟩ as in Eq. (3.31) are depicted as a function of time t for
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3.8 (color online) Displacement fluctuations ⟨δr2⟩ in Eq. (3.38) as a func-
tion of time t in d = 2. (a) Parameters used are γ̃v = γvτr = 5×10−4,
γ̃v = Dvτr/v̄
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crossover times tI/τr = 0.008, tII/τr = 3.03, tIII/τr = 202.8 and
tIV /τr = 2.2 × 103. The dashed line shows two crossovers with
crossover times t∗I/τr = 0.8 and tIV /τr = 2 × 103. (b) Parame-
ters used are γ̃v = γvτr = 2 × 103, D̃v = Dvτr/v̄

2 = 1011 with
Pe = v0/v̄ = 2 × 103 (solid line), 10 (dashed line). The solid
line exhibits four crossovers with crossover times tI/τr = 8 × 10−6,
tII/τr = 7×10−4, t′III/τr = 1.4×10−1 and t′IV /τr = 1.7. The dashed
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2 = 2.5 with Pe = v0/v̄ = 22.36 (solid line),
1.12 (dashed line). (c, d) γ̃v = γvτr = 2× 103, D̃v = Dvτr/v̄

2 = 1011

with Pe = v0/v̄ = 2× 103 (solid line), 10 (dashed line). The inset in
Figure (c) (zoomed in view of the shaded region in main figure) shows
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3.11 (color online) Directed persistent motion: (a) ⟨r4⟩ and (b) Kurtosis
K as a function of time in 2d at γ̃v = γvτr = 0.5, D̃v = Dvτr/v̄
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dashed line in (a) corresponds to the long-time scaling in Eq. (3.51).
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3.12 (color online) Active speed autocorrelation ⟨δv(τ)δv(0)⟩ as a function
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3.13 (color online) Cumulative distribution function F (vm) in Eq. (3.65)
as a function of vm at Dvτr/v̄

2 = 1. (a) Pe = 0, 1, 5 and γvτr = 1.
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4.1 (color online) Time dependence of (a) ⟨r2⟩ in Eq. (4.9) and (b) ⟨δr2⟩
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4.6 (color online) (a) Fourth moment and (b) kurtosis of displacement
as a function of time in d = 2 at D̃a = 1. Points denote numerical
simulations and lines denoted theory. (a) Two crossovers at Pe =
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Pe = 0.3 (green △): ⟨r4⟩ ∼ t2 to ∼ tα with α < 2 to ∼ tα with α > 2
to a final ∼ t2. (c) Kurtosis as a function of time corresponding to
(a). (b) Kurtosis as a function of time corresponding to Pe = 0.1
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Pe = v0τr/ℓ̄ = 4 (▽) at tI ≈ 0.17 and tII ≈ 6.38. Three crossovers
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5.4 The linear stability phase boundary between the stable spiral (blue:
ss) and unstable spiral (yellow: us) phase in the plane of elastic
loading stiffness KT and MP number N is shown using the heat map
of C − AB in Eq. (5.10). The color box shows the mapping for
the values of the function. Parameters used correspond to kinesin-
microtubule assay, keeping k̃m = 450, ω̃ = 20, f̃s = 60, f̃d = 19.2,
ṽ0 = 24.24 fixed. The points denoted by △ and � indicate decaying
oscillations (ss) and stable limit cycle oscillations (us), respectively,
corresponding to the full non-linear dynamics shown in Eq. (5.4).
Here we express KT in units of pN/nm. . . . . . . . . . . . . . . 125

5.5 (color online) (a, b) Kymographs show the time evolution of the prob-
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ω̃ = 5, f̃s = 14.29, N = 160 and K̃T = 4.57. The points denote
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ble limit cycle oscillations (�) obtained from numerical simulations.
The solid black line identifies the boundary of supercritical Hopf-
bifurcation predicted by Eq. (5.10). (d, e) Dynamics corresponding
to open ◦. (d) Time series of x̃ (solid line) and ñm (dashed line).
(e) Unstable limit cycle corresponding to time series of growing os-
cillation in (d). (f, g) Dynamics corresponding to open △. (d) Time
series of x̃ (solid line) and ñm (dashed line). (e) Stable limit cycle
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5.6 (color online) Schematic representation of Microtubule-kinesin mo-
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5.7 (color online) Time evolutions of (a)microtubule displacement x̃(τ),
and (b)mean kinsein extension ỹ(τ). (c) A parametric plot of x̃(τ)
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6.1 (color online) A schematic diagram of the system showing a poly-
mer floating on the motility assay. The tails of MPs are attached
irreversibly on a square grid. The head domains can attach to the
filament, when any segment of it comes within the capture radius.
The active extension of the attached head along the filament gener-
ates force in the opposite direction. The MP stalk is modeled as a
harmonic spring. . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.2 (color online) Time evolution of the turning number ψN at Pe = 105

and the ratio ωon/ω0 = 1. Time t is expressed in the unit of τ . The
plot shows stochastic switching between three states, an open state
with ψN ≈ 0, and two spiral states with ψN ≈ ±3. Representative
polymer configurations corresponding to the three states are shown
at three time instances indicated by arrows. . . . . . . . . . . . . 141

6.3 (color online) Typical configurations of the (a) formation and (b)
breaking of the spiral at Pe = 105 and the ratio ωon/ω0 = 1. Time
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6.4 (color online) Typical configurations of the rotation of the spiral at
Pe = 105 and the ratio ωon/ω0 = 1. Time t is expressed in the unit
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6.5 (color online) (a) Probability distribution functions of turn number
p(ψN) for different Pe = P̃ e× 105 where values of P̃ e are denoted in
the figure legend, at a fixed ratio ωon/ω0 = 1. The triple- maxima
characterize the coexistence in transition from open chains to spirals.
The dependence of the stable (global) (red �) and metastable (blue
✸) maxima of p(ψN) are shown as a function of Pe at ωon/ω0 = 1
in (b), and as a function of ωon/ω0 at Pe = 1.39× 105 in (c). In (b),
the green lines show the plot of ±(|u4|/2u6)

1/2, and the grey lines
show the plot of ±(u2/2u4)

1/2, where u2, u4 and u6 are defined by
Eq. (6.6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.6 (color online) Phase diagram calculated from probability distribution
of turn number p(ψN). The data points denoted by green △ denotes
a stable open chain state, in the complete absence of spirals. The
blue ✷ points denote stable open chains in the presence of metastable
spirals. The red � denotes stable spirals coexisting with metastable
open chains. The boundaries between ✷ and � denote the binodals
where open chains and spirals are equally probable. The solid line
capturing one such phase boundary is a plot of the function ωon/ω0 =
α/(Pe− α) where α = 3.67× 104 (see Section-(6.6)). . . . . . . . 145

xix



List of Figures

6.7 (color online) (a) The steady state turning number fluctuation ⟨ψ2
N⟩

as a function of Pe at different values of ωon/ω0 ratios denoted in the
figure legend. (b) Approximate data collapse of different plots in (a)
by using scale factors A, B. Inset: The dependence of A and B on
q = ωon/ω0. The solid line Ωf = 1.42 q/(0.52 + q) shows a fit to the
data for A. The dotted line shows a fit (0.37 + q)/1.41 q to the data
for B in the regime q > 0.3. The dash- dotted line is a plot of 1/Ωf .
Comparison of time series of ψN for bond lengths r0 = 1.0σ (red),
0.75σ (blue) and 0.5σ (green) are shown at Pe = 3.97× 104 (c) and
Pe = 3.97 × 105 (d). Time t is expressed in the unit of τ . The
data for r0 = 0.75 σ and 0.5 σ are shifted upwards by 8 and 16 for
better visibility. (e) Kurtosis KψN

of turning number ψN plotted at
ωon/ω0 = 0.2, 1.0, 20 with data shown by the same symbols as in
(a). The open ✷ and � denote data at ωon/ω0 = 1.0 for r0 = 0.75 σ
and 0.5 σ respectively. . . . . . . . . . . . . . . . . . . . . . . . . 146

6.8 (color online) (a) End-to-end distribution functions 2πp(r̃e) for Pe =
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Introduction

Active matter consists of self-propelled elements [2, 3, 24, 28–30]. They consume

and dissipate energy at the smallest scale to maintain self-propulsion and produce

active stress in the local environment. Such systems remain out of equilibrium,

breaking the detailed balance condition and the equilibrium fluctuation-dissipation

relation. Biological examples of active matter are abound in nature. They are

found across scales, from microscopic molecular motors and cytoskeletal extracts,

swimming and gliding bacteria, motile cell cultures to macroscopic bird flocks and

animal herds [2]. While the number of artificial self propelled systems remains

smaller, their examples are rapidly growing. They include sub-micron sized active

colloids, active rollers, vibrated granular rods, and robots [3].

In fabricated active matter, the self propulsion can be achieved following several

routes. For example, silica micro-spheres half coated with platinum when immersed

in hydrogen peroxide solution self-propels by hydrolyzing H2O2. The half-coating

in these Janus particles breaks the isotropy allowing them to move in a directed

fashion before undergoing reorientation, leading to a ballistic-diffusive crossover in

dynamics (Fig. 1.1). The generation of self-propulsion involves stochastic processes,

e.g., hydrolysis of hydrogen peroxide in the current example. Such stochasticity can
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Figure 1.1: (color online) Example of a spherical active particle: a Janus swimmer with
different surface property at two hemispheres. This shows decomposition of hydrogen
peroxide on the platinum-covered hemisphere (black) to generate motion (green arrow).
The figure is adapted from Ref. [25].

lead to important dynamical signatures as will be shown in the first part of this

thesis. Another example of artificial self-propelled particle is camphor boats. In a

solvent like water they can change the local surface tension by releasing camphor and

utilize the change to generate self-propulsion [31, 32]. When vibrated, asymmetric

granular rods can perform self-propulsion in a direction determined by the difference

in friction between the two ends of the rod [2].

The non-equilibrium system of passive matter is typically driven from outside

at the longest scale. Examples are: sheared fluid, where the shear stress or strain

are applied from outside on the boundaries of the fluid; heat transport obtained

by attaching two heat baths of different temperatures at the two ends of a system.

In these examples, clearly, the driving is applied on the system from the largest

scales, as opposed to the consumption and dissipation of energy by each individual

elements at the smallest scale in active matter.

As has been already mentioned, biological examples of active matter are abun-

dant in nature and found across scales: motor proteins [22, 33–36], cytoskele-

ton [7, 37–41], cell migration [42–44], bird flocking [45], formation of fish schools [46],

etc. The cytoskeleton consists of semiflexible polymers like actin filaments, inter-

mediate filaments and microtubules and associated motor proteins myosin, kinesin,

dynein, etc [22, 47, 48]. Their persistence length lp varies by orders of magnitude,

e.g., filamentous actin has lp ≈ 16µm and microtubule has lp ≈ 1 mm [26]. The

filaments are typically cross-linked to form a network which undergoes turnover [49–

2



Chapter 1

51]. The motor-proteins associated with each kind of filament, e.g., myosin family

on filamentous actin and kinesin family on microtubule, can move along them hy-

drolyzing ATP and can produce active stresses. The motor proteins share a con-

served mechano- chemical cycle in which the energy release from ATP hydrolysis is

used in motion and force-generation [5, 41, 52, 53]. Motor proteins move along the

polar filament in a directed manner, e.g., on microtubules kinesin and dynein move

in opposite directions, while kinesin is a plus-end directed motor, dynein moves

towards the minus end. This consumption of energy and generation of drive at

the shortest length-scale is the characteristic of active matter [2, 29, 54]. The cy-

toskeleton maintains the size and shape of cells and mediate their deformation and

movement [39, 55].

Much of our current understanding of cytoskeletal extract was developed using

gliding assay experiments as shown in Fig. (1.2). In such a setup, the tails of

motor proteins are irreversibly attached to a substrate. The conjugate filament,

e.g., microtubule for kinesin motor proteins, can glide on such an assay as the

motor proteins bind to the filament and hydrolyze ATP to generate relative motion.

Motion of such a filament under external load, e.g., arising from a harmonic trap

can lead to limit cycle oscillations [56–59]. Competition between opposing groups

of MPs can lead to spontaneous oscillations in gliding assays [60]. Cytoskeletal

filaments driven by motor proteins shows interesting shape changes, e.g., spiral

formation [17, 19, 61, 62] and collective gliding and swirling at higher densities [20,

21, 63]. In the second part of this thesis we consider a detailed model of molecular

motors driving semiflexible filaments exploring the dynamics and shape changes.

The role of cytoskeleton in cell division is conserved across species. The dy-

namics and pattern formation in cell motility, cell shape change, cell division is

yet to be fully understood. Similar spontaneous oscillations are observed in var-

ious contexts in cell biology [64, 65], e.g., sarcomere oscillations, mitotic spindle

oscillations, and chromosome oscillations [66–69]. An example of a fluorescently

labelled cell with its different components labelled by different colors is shown in

Fig. (1.3). The actomyosin cytoskeleton consisting of F-actin network and myosin
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Figure 1.2: (color online) Schemetic representation of cytoskeletal filaments and mo-
tor proteins. (A) Microtubule and actin filament: microtubule polymerized from tubulin
dimers and actin filament polymerized from globular actin monomers. (B) Kinesin motors
move on microtubules hydrolyzing ATP. Myosin-II motor proteins move along F-actins hy-
drolyzing ATP. (C) An gliding assay of motor proteins consisting of kinesins and myosins
adhered to a cover slip. Microtubules and F-actins are added to the chamber where they
bind to the motor proteins and get propelled actively. The methylcellulose is added to
keep the F-actin and microtubules crowded to the surface. The figure is adapted from
Ref. [26].

motor proteins generate local contractile stress. The mechanism powers a wide

range of physiological processes, e.g., muscle contraction, cell division, cell migra-

tion, and morphogenesis in cells and tissues. The contractile stress generated by

myosin II is sensitive to external force and substrate stiffness [39, 70]. The F-actin

network reorganizes with time to allow flow. The turnover of myosin association

with the network microscopically depend on the load applied on myosins. The con-

tinuous cortical flows requires local remodelling of the actomyosin networks [71, 72].

In a coarse-grained level this provides a mechanism to relax the active stress gener-

ated on the network. Its role in actomyosin dynamics and pattern formation is not

yet fully understood. The actomyosin can be modeled as an active fluid over long
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Figure 1.3: (color online) Components of the eukaryotic cell. The actin filaments are
shown in red, microtubules in green, and the nuclei in blue. The figure is adapted from
Wikipedia https://www.wikipedia.org/

time-scales. The local fluid velocity originates in response to the inhomogeneous

contractile stress. It was recognized early on that changes in cellular and tissue

morphology is determined by a close coupling between chemical and mechanical

processes [73]. The generation of active mechanical forces utilizing ATP and asso-

ciated active advection can lead to spatial pattern formation in cells [23, 74]. Such

pattern formation, spontaneous oscillation, pulsation, propagation of stress waves

were observed and studied in several contexts [57, 75–78]. In the last part of this

thesis, we consider a simple two-component active hydrodynamic model for acto-

myosin, allowing for local turnover between active and passive state. We use this

model to demonstrate emergence of various pattern forming and dynamical phases.

Outline of the thesis

In this thesis, we focus on active systems. In the first part, we study the dynam-

ics of active Brownian particles (ABP). We propose and utilize a Laplace transform

method based on Fokker-Planck equations to derive exact expressions for all possible

moments of dynamical variables in arbitrary dimensions. We begin in Chapter-2

by considering ABPs with constant active speed in the presence of orientational

diffusion and a thermal bath. We show that an exact mapping of the ABP trajec-
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tories to an equilibrium extensible semiflexible polymer is possible. The dynamics

shows several ballistic-diffusive crossovers that we analyze in detail. In Chapter-

3, and Chapter-4 we consider the impact of speed fluctuations on the dynamics

of ABPs, again deriving several exact results. We present direct numerical simula-

tions showing clear agreement with analytic predictions, and to obtain displacement

distributions.

In the second part of the thesis, we consider filament- motor protein systems.

In Chapter-5, we present a detailed model of a gliding assay of motor proteins

and use numerical simulations to study the dynamics of a rigid rod on such an as-

say. We present detailed phase diagrams and study the impacts of various control

parameters, e.g., the number of molecular motors, their active speed, attachment-

detachment ratio etc. The behavior of the filament under external directed load

and harmonic loading are presented. The numerical results show good agreement

with mean field theory in the limit of large number of motor proteins. In Chapter-6

we consider the dynamics of a semiflexible filament on the molecular motor assay.

Again we use a direct numerical simulation and compare our results with approx-

imate mean field theory. We observe a re-entrant transition between open chain

and spiral configurations.

In the last part of the thesis, we consider the dynamics of actomyosin in the

presence of a substrate. We present and use a two-component active fluid model,

allowing turnover between the components. In Chapter 7, we consider possibilities

of constant turnover and stress-dependent turnover. In Chapter 8, we consider

the possibility of a strain-rate dependent turnover. We perform direct numerical

integrations of the coupled non-linear fields, and perform linear stability analysis

to explore their properties. The two chapters show emergence of various pattern

forming phases, pulsating patterns and, in one case, moving patterns.

Finally, in Chapter 9, we summarize our findings and conclude.
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Active Brownian particle (ABP)

2.1 Introduction

Active particles are entities that can perform dissipative self-propulsion even in the

absence of external driving force. Their dynamics violates equilibrium fluctuation-

dissipation relation. The energy required for the motion is supplied at the local

scale by different processes depending on the situation, e.g., internal energy depot in

bacteria, hydrolysis of chemical fuel like ATP for molecular motors, and transverse

shaking in active granular matter [1–4, 30, 58]. The direction of active motion

is decided by the inbuilt asymmetry of the particles [4], or environment, e.g., as

provided by filamentous tracks for molecular motors [58]. The system remains out

of equilibrium, detailed balance being broken naturally in self propulsion.

The model of active Brownian particles (ABPs), in which a particle has its

own heading direction of self-propulsion, while the heading direction itself performs

rotational diffusion, has been used to describe self-propelled colloidal particles [79,

80]. Its behavior becomes equivalent to that of bacterial run and tumble motion in

the long time limit [81]. A related model of the active Ornstein-Uhlenbeck process

(AOUP) also describes self propulsion and has attracted considerable attention

recently, due to its relative simplicity [8, 12, 82].
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Despite a tremendous advancement in the knowledge of collective properties of

active matter, the dynamics of single active particles is not yet completely under-

stood. Some recent analytic results [8–10, 12–14, 83–90] indicate the qualitatively

rich physics that even a single active particle can exhibit. The work in [9, 10] consid-

ered free ABP in two dimensions in the presence of thermal noise. Using a Fourier

series expansion of the corresponding Fokker-Planck equation they were able to ob-

tain various analytic results for the radial distribution and also some moments. In

particular they computed the Kurtosis and pointed out that this could be used to

differentiate the ABP from Gaussian models such as the AOUP. The same model

was solved exactly in [12] by using a series expansion involving a Fourier basis for

the position of the ABP and a Mathieu functions basis for its angular degree of free-

dom. On the other hand [13, 87] studied ABP without thermal noise and obtained

exact results for short time and long time asympotitic properties of the positional

distributions and pointed out the presence of anisotropies in short time behaviour.

Remarkably, the Fokker-Planck equation corresponding to the ABP, in the ab-

sence of thermal noise, was studied as early as 1952 [91, 92] in the context of un-

derstanding the so-called worm-like-chain (WLC) model of semi-flexible polymers.

The WLC model is the continuous version of the Kratky-Porod model, which in

turn corresponds to a persistent random walker. In fact an exact mapping can be

obtained between the trajectories of an ABP and the equilibrium configurations

of the semi-flexible polymer and this has been used to understand the equilibrium

properties of the polymer [93–95]. On the other hand it is well known that trajecto-

ries of passive Brownian particles generate so-called flexible Gaussian polymers [96].

In terms of energetics, the WLC model is one which has only bending energy, while

the Gaussian polymer has only stretching energy. It is then natural to ask what

the polymer model would be that corresponds to an ABP in the presence of trans-

lational thermal noise. One of the aims of the chapter is to explore this connection.

A second main objective of the chapter is to point out that the approach of [91]

provides an efficient method of computing all moments (of both positional and ori-

entational degrees of freedom) of the ABP (with or without translational thermal

8
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noise), in arbitrary dimensions.

In this chapter, we consider free ABPs in d-dimensions, in the presence of trans-

lational thermal noise. We summarize here our main results:-

1) We discuss the mapping of the ABP trajectories to the equilibrium polymer

configurations. We point out that the polymer model differs from the physical

system including both bending and stretching energy and the physical relevance is

thus not clear. Nevertheless we illustrate the mapping by comparing results for var-

ious dynamical moments and displacement distribution functions of ABPs with the

corresponding polymer properties obtained from equilibrium polymer simulations.

We show that ABP simulations provide an efficient alternate means of obtaining

equilibrium polymer properties that usually require Monte-Carlo or Langevin sim-

ulations.

2) We show how arbitrary moments of position and orientation degrees of free-

dom can be computed exactly by utilizing the Fokker-Planck equation governing

the dynamics of ABP, using the approach in [91]. Interesting dynamical crossovers

displayed by the moments are analyzed using the exact expressions. The resultant

dynamics crosses over from short-time equilibrium diffusion, to intermediate time

active ballistic motion, to long time effective diffusion. Short time anisotropies in

the distribution, pointed out in [87] are also discussed. As has been pointed out in

earlier studies [8, 9], we show that the Kurtosis, which we compute exactly, can be

used to distinguish between the ABP and the AOUP models.

The plan of the chapter is as follows. In the Section-2.2, we present the ABP

model in the presence of translational diffusion. We demonstrate an exact map-

ping of path probabilities of trajectories of ABP to configurational properties of

equivalent equilibrium polymer model in Section-2.3. In Section-2.4, we present the

method to calculate exact moments in any arbitrary dimensions. In Section-2.5, We

calculate orientation correlation and average displacement and compare them with

the simulation results in two dimensions. In Section-2.6, We calculate quadratic

order moment and displacement fluctuation and show the crossovers with crossover

9
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Figure 2.1: (color online) Schematic representation of active Brownian particle. The
velocity of ABP is v0û where v0 is the speed of the particle with heading direction along
û = (u1, u2, ..., ud) in d-dimension.

timescales. In the similar method, we calculate components of displacement fluc-

tuation in Section-2.7 and quartic order moment in Section-2.8. In Section-2.9, we

present a detailed analysis of how the distribution function of displacement of ABP

changes with time. In Section-2.10, We calculate an exact generalized Kurtosis to

differentiate ABP to active Ornstein-Uhlenbeck particle(AOUP). We conclude in

Section-2.11 with a discussion of our main results present in this chapter.

2.2 Definition of the model

The active Brownian particle (ABP) in d-dimensions is described by its position

r = (r1, r2, . . . , rd) and its orientation û = (u1, u2, . . . , ud) which is a unit vector

in d-dimensions. Schematic representation of the particle with velocity v = v0û

shows in Fig. (2.1). Here speed of the particle v0 is constant. Let the infinitesimal

increment at time t are denoted by dri = ri(t+dt)−ri(t) and dui = ui(t+dt)−ui(t).

In Ito convention[97, 98], the equation of motion of the ABP is given by

dri = v0ui dt+ dBt
i(t), (2.1)

dui = (δij − uiuj) dB
r
j (t)− (d− 1)Drui dt, (2.2)

where the Gaussian noise terms dBt and dBr have mean zero and variances

⟨dBt
idB

t
j⟩ = 2Dδij dt, ⟨dBr

i dB
r
j ⟩ = 2Drδij dt control the translational and rotational

diffusions, respectively.

10
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Figure 2.2: (color online) Typical ABP trajectory. The blue point shows the initial
starting point with heading dircetion along x-axis. Direct simulation of equation of mo-
tion (2.1), (2.2) in two dimension with parameters D = 1, Dr = 1, and v0 = 130.

Alternatively, we can write the Eq. (2.2) in the Stratonovich form

(S) dui = (δij − uiuj) ◦ ηrjdt. (2.3)

Eq. (2.1) gives ⟨dri⟩ = v0uidt and ⟨dridrj⟩ = 2Dδij dt. The form of Eq. (2.2) ensures

the normalization û2 = 1 at all times. Eq. (2.2) implies the mean and variance of

the orientational fluctuations

⟨dui⟩ = −(d− 1)Drui dt (2.4)

and

⟨duiduj⟩ = 2Dr(δij − uiuj) dt. (2.5)

These expressions are utilized in deriving the Fokker-Planck equation for this system

which is discussed in Section-2.4.

It is straightforward to perform a direct numerical simulation of Eqs. (2.1), (2.2)

using the Euler-Maruyama integration scheme to generate trajectories of motion

depicted in Fig. (2.2). In the following, we first show how the ABP trajectories can

be mapped to an effective polymer model.

11
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2.3 Exact mapping to equilibrium polymer model

The probability distribution of a stochastic trajectory {r(t), û(t)}, corresponding

to the evolution Eqs. (2.1), (2.2) over the time-range t ∈ (0, τ), is given by

P [{r(t), û(t)}] ∝ e−
1

4D

∫ τ
0 dt( ∂r

∂t
−v0û)

2− 1
4Dr

∫ τ
0 dt( ∂û

∂t )
2

. (2.6)

Denoting a length segment of the trajectory by v0dt = dl, one obtains ∂r/∂t =

v0(∂r/∂l) and ∂û/∂t = v0(∂û/∂l) to get

P [{r(l), û(l)}] ∝ e−
v0
4D

∫ L
0 dl( ∂r

∂l
−û)

2− v0
4Dr

∫ L
0 dl( ∂û

∂l )
2

, (2.7)

where L = v0τ is the total length traversed. This action for the path probability dis-

tribution can be written as P [{r(l), û(l)}] ∝ e−βE , where now E can be interpreted

as the energy of a polymer configuration, and given by

βE =
A

2

∫ L

0

dl

(
∂r
∂l

− û(l)

)2

+
κ

2

∫ L

0

dl

(
∂û

∂l

)2

, (2.8)

where, β = 1/kBT , and we identify A = v0/2D, and κ = v0/2Dr. This is the

energy cost of a polymer configuration described by {r(l), û(l)}, where note that

r(l) and û(l) are independent fields. In the limit of vanishing translational diffusion

(A → ∞), we require ṙ = v0û(t) and so in this case we can identify û(l) = ∂r/∂l as

the local unit tangent vector on the polymer configuration obeying the constraint

|∂r/∂l|2 = 1. Thus, in this limit, the polymer is effectively described by the second

term in the energy expression in Eq. (2.8) and this corresponds precisely to the

worm-like chain (WLC) model with [93, 96]

βE =
κ

2

∫ L

0

dl

(
∂û

∂l

)2

. (2.9)
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( a ) ( b ) ( c ) ( d )

Figure 2.3: (color online) Typical configurations of (a) the polymer mapping of the
ABP model (Eq. (2.8)), (b) the related worm-like-chain (Eq. (2.9)), (c) the related Gaus-
sian polymer under a directed external force (Eq. (2.10)), and (d) the related extensible
semiflexible chain (Eq. (2.13)). The thick (red) line in (a) shows the worm-like-chain con-
formation that the Gaussian polymer denoted by the beads and springs tries to align with.
The configurations are plotted with chain length L = 15σ, persistence length ℓp = 4.28σ,
spring constant A = 30.0σ−1 in (a) and (d), and A = 1.0σ−1 in (c) . Note that A does
not play any role in deciding the conformation in (b).

On the ther hand, the limit κ → ∞ requires that û be a constant unit vector. Using

this input in the first term of Eq. (2.8) leads to the energy functional

βE =
A

2

∫ L

0

dl

(
∂r
∂l

)2

− A[r(L)− r(0)] · û (2.10)

which corresponds to a Gaussian polymer with a force along the direction û [96].

In Fig. (2.3) we show a comparison between (a) a typical configuration of the

polymer mapping of the ABP model, (b) its constant bond-length limit of the WLC

model, (c) its limit of the Gaussian chain under directed external force for the same

parameter values. In Fig. (2.3)(d) we show a related configuration of an extensible

semiflexible chain (ESC), discussed in Section-2.3.2.

To extract equilibrium properties of polymers a common strategy is to perform

either Monte-Carlo simulations or Langevin dynamics. In the following section

we compare results from such simulations with those obtained from simulations of
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Figure 2.4: (color online) Comparison between probability distributions of ABP dis-
placement (solid lines) and end-to-end separation of polymers (points): Here v0 = 1.8σ/τu
and D = 0.02σ2/τu are held constant. In all the simulations, the first step in the ABP
model, and the bond orientation of one end of the polymer are held fixed along the
x-direction. The bimodal distributions corresponding to Drτu = 0.02 (✷), 0.03 (△),
0.05 (⋄), 0.1 (◦), 0.2 (▽). Inset: The same comparisons at Drτu = 0.08 (⋄), 0.09 (▽),
0.1 (◦), 0.11 (✷), 0.12 (△).

the ABP dynamics, using the exact mapping of polymer configurations and ABP

trajectories.

2.3.1 Comparisons between ABP dynamics and mapped poly-

mer simulations

Let us now test the polymer mapping numerically by comparing displacement

distributions of the ABP with the end-to-end distributions of the mapped poly-

mer. We present results in two dimensions (2d). Replacing the orientation field

û(l) = (cos θ(l), sin θ(l) ), the second term in the expression of energy in Eq. (2.8)

simplifies to κ
2

∫ L

0
dl
(
∂θ
∂l

)2.

After discretization the energy becomes,

βE =
N−1∑

i=1

A

2σ
[bi − σûi]

2 +
N−1∑

i=1

κ

2σ
[θi+1 − θi]

2 , (2.11)
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where bi = ri+1−ri is the bond vector between the i-th and (i+1)-th bead, and in the

first term the vector ûi = (cos θi, sin θi). The continuum limit is obtained as σ → 0

with L ≡ v0τ = (N − 1)σ, A/σ and κ/σ held constant. To perform equilibrium

simulations of the polymer, we use the over-damped Langevin equations of motion

γ ṙi = −∂E/∂ri +
√

2γkBT Fi

γr θ̇i = −∂E/∂θi +
√
2γrkBT Λi, (2.12)

where Fi and Λi denote uni-deviate Gaussian white noise terms. Here kBT and σ set

the unit of energy and length respectively, and τu = γσ2/kBT sets the characteristic

time over which a bead diffuses over its size σ. In our simulations we choose the

Langevin heat bath characterized by an isotropic friction γ = γr = 1/τu. The

simulations are performed using Euler-Maruyama integration of these equations,

with time step δt = 0.001τu.

We perform polymer simulations with 64 beads, and compare the results with

ABP trajectories generated over L ≡ v0τ = 63σ. We obtain the end-to-end distri-

bution function p(r) for the polymer mapping, and compare the results with prob-

ability distributions of the particle-displacements obtained from the original ABP

model. The distributions are normalized to
∫∞
0

p(r) 2πr dr = 1. Three parameters

in the ABP model, D, Dr and v0 control the dynamics.

In Fig. (2.4) we fix v0 = 1.8 σ/τu, D = 0.02 σ2/τu and vary Dr of the ABP that

maps to different κ = v0/2Dr of the semiflexible chain, and keeps the bond stiffness

A = v0/2D constant. The semiflexibility of the chain is determined by the rigidity

parameter L/ℓp, the ratio of polymer length L to persistence length ℓp = 2κ/(d−1).

In terms of the ABP model, L/ℓp = (d − 1)Drτ . Fig. (2.4) shows the distribution

functions in the range of 0.7 ≲ L/ℓp ≲ 7. The inset of Fig. (2.4) focuses on the

region of bimodality 2.8 ≲ L/ℓp ≲ 4.2 recapturing the WLC behavior [93]. The

agreement between the two data sets of the ABP model and its polymer mapping

is evident from the figure. The relatively large value of A (= v0/2D = 45σ−1) in

the corresponding polymer model, for the parameter choice in Fig. (2.4), ensures
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Figure 2.5: (color online) Comparison between probability distributions of ABP dis-
placement (solid lines) and end-to-end separation of polymers (points): We keep vo =
1.8σ/τu, Dr = 0.1 τ−1

u for ABP constant, and show the mapping of ABP to polymer for
Dτu/σ

2 = 0.02 (◦), 0.5 (✷), 2 (△). Inset: The loss of bimodality magnified.

small bond length fluctuations (within 7.5%), allowing to recapitulate the behavior

of WLC polymer.

The bimodality in the distribution function for the ABP means that some of

the trajectories will generate small displacements, while some other will produce

large displacements. The corresponding polymer will fluctuate between config-

urations having low to high end-to-end separation. The free energy F (r, L) =

−kBT ln[p(r, L)] will show a double minima suggesting a non-monotonic force-

extension exemplifying a region of negative response in the Helmholtz ensemble [93].

In Fig. (2.5), we hold v0 = 1.8 σ/τu, Dr = 0.1 τ−1
u fixed such that at D =

0.02 σ2/τu one obtains clean bimodal distribution as in Fig. (2.4). We proceed to

increase D and examine the robustness of the bimodality. At larger D, the effec-

tive spring constant of the bond lengths A = v0/2D reduces. Corresponding to

Dτu/σ
2 = 0.02, 0.5, 2 one finds two orders of magnitude reduction of spring con-

stant Aσ = 45, 1.8, 0.45 respectively. This allows large bond- length fluctuations.

Fig. (2.5) shows clear numerical agreement between the distribution functions ob-

tained from the two models, exemplifying the mapping. Clearly with reducing A

first the contrast of the bimodality reduces as the distribution gets flatter, and
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Figure 2.6: (color online) Comparison between probability distributions of ABP dis-
placement (solid lines) and end-to-end separation of polymers (points): We kept D =
1.0σ2/τu and Dr = 1.0τ−1

u constant and varied v0 keeping v0τ constant. The data de-
notes v0τu/σ = 10 (▽), 20 (◦), 40 (⋄), 100 (△).

finally at Aσ = 0.45 the bimodal structure vanishes.

Finally, in Fig. (2.6) we demonstrate the change in the probability distribution

of finite time trajectories of ABP as the propulsion velocity v0 is varied, keeping

L = v0τ constant. Here we fix the values of Dr and D. Increasing v0 increases

both A = v0/2D and κ = v0/2Dr together in the polymer mapping. At small v0,

the chain remains in the flexible Gaussian regime. With increasing v0 the bond-

length fluctuations decrease as the corresponding spring constant A increases. The

persistence length ℓp increases as well. This leads the chain towards the WLC

regime showing the emergence of bimodality near v0 = 20 σ/τu. The comparison of

results between the two models show good agreement.

Having established the mapping of the ABP model to the polymer model, the

results presented in the following will be interpreted interchangeably. For a fixed v0,

the evolution time τ in ABP will be understood in terms of contour length L = v0τ .
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Figure 2.7: (color online) Comparison between the ABP model and the extensible
semiflexible chain (ESC). We keep parameters v0 = 1.8σ/τu, Dr = 0.1 τ−1

u constant. The
lines show results from the ABP model at Dτu/σ

2 = 0.02 (red), 0.5 (green), 2 (blue).
Points denote results for ESC at the corresponding Aσ = 45 (red ◦), 1.8 (green ✷),
0.45 (blue △). Inset: magnified view highlights difference between the results of the two
models.

2.3.2 How far from extensible semi-flexible polymer is mapped

polymer( or ABP) ?

We briefly comment on how the polymer model described by Eq. (2.8) differs from

polymers with both bending and stretching energy terms, which we refer to as

a extensible semi-flexible chain (ESC). Let us consider a polymer with monomer

positions r1, r2, . . . , rN . We define bond vectors bn = rn+1−rn, for n = 1, 2, . . . , N−1

and let the local tangent tn = bn/bn, where bn = |bn|. Then the following energy

describes the ESC with stretching and bending energy terms:

βEESC =
N−1∑

n=1

A

2σ
(bn − σ)2 +

N−2∑

n=1

κ

2σ
(tn+1 − tn)2. (2.13)
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In the continuum limit this gives

βEESC =
N−1∑

n=1

A

2σ
(rn+1 − rn − σtn)2 +

N−2∑

n=1

κ

2σ
(tn+1 − tn)2,

=

∫ N

0

dn

[
A

2σ

(
∂r(n)
∂n

− bt(n)
)2

+
κ

2σ

(
∂t(n)
∂n

)2
]

,

=

∫ L

0

dl

[
A

2

(
∂r(l)
∂l

− t(l)
)2

+
κ

2

(
∂t(l)
∂l

)2
]

, (2.14)

where a contour segment is denoted by l = nb and the chain length L = Nb. This

energy has the same form as in Eq. (2.8), however, note that r(l) and t(l) are not

independent fields and are related through the equality t(l) = (∂r(l)/∂l)/|∂r(l)/∂l|.
On the other hand, r(l) and u(l) in Eq. (2.8) are independent fields. Hence, while

superficially the two energies in Eq. (2.8) and Eq. (2.14) look identical, the polymer

representation of the active particle needs a different physical interpretation. This in

fact corresponds to a flexible Gaussian polymer sitting on top of another semiflexible

polymer with an inter-polymer interaction that tries to align the two polymers.

In Fig. (2.7) we compare numerical simulation results from the polymer models

in Eq. (2.13) and Eq. (2.11). It is clear from the figure that the distributions

obtained from the two models are different. The end-to-end separations they predict

do not agree, except in the limit of large A. The difference is due to the absence of

the constraint t(l) = (∂r(l)/∂l)/|∂r(l)/∂l|, which is an integral part of ESC, in the

polymer mapping of ABP. For large spring constant A, the bond length fluctuations

become negligible reducing the polymer configurations corresponding to both the

models equivalent to the WLC polymer.

2.4 Exact computation of moments for ABP

The probability distribution P (r, û, t) of the position r and the active orientation

û, controlling the self-propulsion velocity v(t) = v0û(t), of the ABP follows the
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Fokker-Planck equation

∂tP (r, û, t) = D∇2P +Dr∇2
uP − v0 û ·∇P,

where ∇2 is the d-dimensional Laplacian operator, and ∇2
u denotes the Laplacian in

the (d−1) dimensional orientation space. We note that the spherical Laplacian can

be expressed in terms of the cartesian coordiantes y defined through ui = yi/y where

y =| y | as ∇2
u = y2

∑d
i=1 ∂

2
yi
− [y2∂2

y + (d − 1)y∂y]. This equation can be derived

using the standard procedure of determining the mean and variance of infinitesimal

displacements in position r(t) and orientation û(t). We used the Ito interpretation

of the stochastic dynamics. The first and last terms on the right hand side describe

the translational diffusion and active drift respectively. The second term describes

orientational diffusion and follows from the result obtained in Eq. (2.5).

Using the Laplace transform P̃ (r, û, s) =
∫∞
0

dte−stP (r, û, t), the Fokker-Planck

equation can be recast in the form,

−P (r, û, 0) + sP̃ (r, û, s) = D∇2P̃ +Dr∇2
uP̃ − v0 û ·∇P̃ .

Let us define the mean of an arbitrary observable in the Laplace space by ⟨ψ⟩s =
∫
dr dûψ(r, û)P̃ (r, û, s). Multiplying the above equation by ψ(r, û) and integrating

over all possible (r, û) we find

−⟨ψ⟩0 + s⟨ψ⟩s = D⟨∇2ψ⟩s +Dr⟨∇2
uψ⟩s + v0 ⟨û ·∇ψ⟩s, (2.15)

where the initial condition sets ⟨ψ⟩0 =
∫
dr dûψ(r, û)P (r, û, 0). Without any loss

of generality, we consider P (r, û, 0) = δ(r)δ(û− û0). Eq. (2.15) can be utilized to

compute all the moments as a function of time. In the following, we illustrate the

approach by explicitly deriving some of these moments and using them to analyze

the ABP motion (equivalently the polymer model).
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2.5 Orientation correlation and average displacement

2.5.1 Orientation correlation

Let us first consider the evolution of velocity v(t) = v0û(t). Thus we consider

ψ(r, û) = û. It is easy to see that ⟨ψ⟩0 = û0, ⟨∇2ψ⟩s = 0, ⟨û · ∇ψ⟩s = 0, and

∇2
uû = −(d− 1)û. As a result Eq. (2.15) leads to

⟨û⟩s =
û0

s+ (d− 1)Dr

,

which, after performing inverse Laplace transform gives an exponential decay

⟨û(t)⟩ = û0e
−(d−1)Drt. (2.16)

From the above derivation, it is easy to see that

⟨û · û0⟩(t) = e−(d−1)Drt, (2.17)

if one considered ψ(r, û) = û · û0. This shows that the orientational correlation

decays with a correlation time τr = [(d− 1)Dr]
−1 in d-dimensions.

The persistence time τr sets the unit of time in the problem. Using it along with

the translational diffusion constant D, the unit of length can be set by ℓ̄ =
√
D/Dr

resulting in a unit of velocity v̄ = ℓ̄/τr =
√
DDr. The dimension-less activity can

be expressed as λ = v0/v̄.

In Fig. (2.8)(a) we show simulation results of two-time orientational correlation

⟨û(t) · û(0)⟩, and its comparison with the analytical form e−t where t is expressed

in units of τr = 1/Dr in 2d.

A mapping of the orientational correlation to the tangent-tangent correlation of

the WLC model is possible, considering the trajectory length l = v0t as a polymer

segment of the same length. The correlation ⟨û(t) · û(0)⟩ = exp(−t/τr) is then

21



Chapter 2

0.1

0.2

0.4

0.6
0.8
1.0

0 0.5 1 1.5 2 2.5

�û
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Figure 2.8: (color online) (a)Orientational correlation ⟨û(t) · û(0)⟩, and (b) the displace-
ment ⟨r∥⟩ along the initial orientation û0 of the ABP are shown as a function of time t in
2d. Here D = 1.0σ2/τu, and v0 = 1.0σ/τu are held constant, and we use Drτu = 0.1(✷),
0.2(◦). The results of numerical simulations are shown by points, and analytic predic-
tions by dashed lines. In this figure, and all other figures presented in this section, the
length and time axes are expressed in units of ℓ̄ =

√
D/Dr and τr = 1/Dr, respectively.

The dashed line in (a) shows ⟨û(t) · û(0)⟩ = e−t in the semi-log plot, and in (b) shows
⟨r∥⟩ /λ = (1− e−t) with λ = v0/

√
DDr.

equivalent to ⟨û(l) · û(0)⟩ = exp(−l/ℓp) with ℓp = v0/(d− 1)Dr. This is consistent

with the WLC result ℓp = 2κ/(d − 1) and the mapping κ = v0/2Dr between the

ABP and its corresponding polymer model.

2.5.2 Displacement

Using ψ = r in Eq. (2.15), along with the result ⟨û⟩s = û0/(s + (d − 1)Dr) allows

us to obtain

⟨r⟩s =
v0 û0

s(s+ (d− 1)Dr)
, (2.18)

which leads to

⟨r⟩(t) = v0 û0

(d− 1)Dr

(
1− e−(d−1)Dr t

)
. (2.19)
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Let us define the displacement components along and perpendicular to the initial

orientation as

r∥ = (r.û0)û0, r⊥ = r − r∥ . (2.20)

We then see that the mean displacement along the initial orientation ⟨r∥⟩ = ⟨r · û0⟩
grows and saturates to a finite value as ⟨r∥⟩/ℓ̄ = λ(1 − e−t/τr), where λ = v0/v̄ is

the dimensionless parameter controlling activity (see Fig. (2.8)(b) ). On the other

hand, the average displacement vector perpendicular to û0 vanishes ⟨r⊥⟩ = 0.

2.6 Quadratic order moment and displacement fluc-

tuation

2.6.1 Quadratic order moment

Let us now consider ψ(r, û) = r2 and calculate the time dependence of ⟨r2⟩(t). It is

easy to see that ⟨ψ⟩0 = 0 and ⟨∇2
uψ⟩s = 0. The average ⟨∇2r2⟩s = 2d⟨1⟩s. Note that

⟨1⟩s =
∫
drdûP̃ =

∫
drdû

∫∞
0

dte−stP =
∫∞
0

dte−st{drdûP} =
∫∞
0

dte−st = 1/s.

Further, ⟨û ·∇r2⟩s = 2⟨û ·r⟩s. Thus Eq. (2.15) leads to s⟨r2⟩s = 2dD/s +2v0⟨û ·r⟩s.
To complete the calculation, one needs to evaluate ⟨û·r⟩s using the same Eq. (2.15).

One may proceed like before, utilizing the relation ∇2
uû = −(d− 1)û, ⟨û ·∇ψ⟩s =

⟨û2⟩s = 1/s, to get s⟨û · r⟩s = −(d− 1)Dr⟨û · r⟩s + v0/s. This gives

⟨û · r⟩s =
v0

s(s+ (d− 1)Dr)
, (2.21)

which leads to the cross-correlation

⟨û · r⟩ = v0
(d− 1)Dr

(
1− e−(d−1)Dr t

)
.
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Plugging the relation from Eq. (2.21) into Eq. (2.15) one finds

⟨r2⟩s =
2dD

s2
+

2v20
s2(s+ (d− 1)Dr)

. (2.22)

Performing the inverse Laplace transform, we obtain

⟨r2⟩ = 2d

(
D +

v20
(d− 1)dDr

)
t− 2v20

(d− 1)2D2
r

(
1− e−(d−1)Dr t

)
. (2.23)

In the limit of t ≪ τr = 1/(d − 1)Dr, the motion is dominated by the simple

translational diffusion, ⟨r2⟩ ≈ 2dD t. In the long time limit, the equation gives

diffusive scaling ⟨r2⟩ = 2dDefft with the effective diffusion constant in d-dimensions

Deff = D +
v20

(d− 1)dDr

. (2.24)

A series expansion of Eq. (2.23) around t = 0 gives

⟨r2⟩ = 2dDt+ v20t
2 − 1

3
v20(d− 1)Drt

3 +O(t4).

This shows that ⟨r2⟩ will crossover from a diffusive ∼ t to ballistic ∼ t2 scaling at

tI = (2d/λ2)τr. This is expected to be followed by another crossover from ballistic

to diffusive behavior near tII ≈ [3/(d − 1) ]τr. These crossovers along with the

estimated crossover-points tI and tII are shown in Fig. (2.9)(a) for an ABP moving

in 2d. The simulation results agree with the above estimates. In the limit of D = 0,

only a single crossover from ⟨r2⟩ ∼ t2 to ⟨r2⟩ ∼ t at tIIDr ≈ 3/(d− 1) survives.

24



Chapter 2

101

102

103

10−6 10−4 10−2 100 102

�r
2
�/
t

t

t

tII

tII

tI

tI

(a)

101

102

103

10−2 100 102

�δ
r2
�/
t

t

t2
tII

tII
tI

tI

(b)

Figure 2.9: (color online) Time dependence of ratios ⟨r2⟩/t and ⟨δr2⟩/t in two dimension.
Dr = 1.0 τ−1

u , v0 = 10σ/τu are held constant. The results of numerical simulation at
Dτu/σ

2 = 0.1(✸), 1(◦), 100(✷) are shown by points denoted in the two figures. Dashed
lines show plots of ⟨r2⟩ and ⟨δr2⟩ present in Eqs. (2.23) and (2.25) respectively. For
individual curves, arrows denote tI = (2d/λ2)τr, tII = [3/(d − 1)]τr in (a), and tI =
[3d/(d− 1)]1/2τr and tII = [4/3(d− 1)]τr in (b), with d = 2.

2.6.2 Displacement fluctuation

Using Eqs. (2.19) and (2.23), one can calculate the fluctuation of the displacement

⟨δr2⟩ = ⟨r2⟩ − ⟨r⟩2.

⟨δr2⟩ = 2d

(
D +

v20
(d− 1)dDr

)
t− v20

(d− 1)2D2
r

(
3− 4 e−(d−1)Dr t + e−2(d−1)Drt

)
.

(2.25)

The lines through the simulation results plotted with points in Fig. (2.9)(b) corre-

spond to this relation. In the small time limit it can be expanded to give

⟨δr2⟩ = 2dDt+
2

3
(d− 1)Drv

2
0t

3 − 1

2
(d− 1)2D2

rv
2
0t

4 +O(t5). (2.26)

Thus the mean squared displacement ⟨δr2⟩ is expected to show crossovers from a

diffusive ∼ t scaling to ∼ t3 scaling at tI ≈ [3d/(d − 1)]1/2τr/λ. This would be

followed by another crossover back to diffusive scaling near tII ≈ [4/3(d − 1)]τr.

These crossovers obtained from simulations in 2d and their comparison with the

above analyses are shown in Fig. (2.9)(b). In the limit of D = 0, only a single

crossover from ⟨δr2⟩ ∼ t3 to ⟨r2⟩ ∼ t at tII ≈ [4/3(d− 1)]τr survives.
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The expression for ⟨r2⟩ in Eq. (2.23) can easily be mapped to find the expression

for the end-to-end separation for WLC model, setting D = 0. As before, we use

κ = v0/2Dr, l = v0t to obtain

⟨r2⟩ = 4κl

d− 1
− 8κ2(1− e−

(d−1)l
2κ )

(d− 1)2
, (2.27)

a well known result of the WLC model [93].

2.7 Components of displacement fluctuation

Due to the persistence of motion, the fixing of initial active orientation of the ABP

leads to asymmetric displacements, characetrized by ⟨r2∥⟩ and ⟨r2⊥⟩, where r∥ and

r⊥ ⊥ û0 are defined in Eq. (2.20). Without any loss of generality, we assume that

the initial orientation of activity û0 is in the x-direction, û0 = x̂. Using r2∥ = x2 as

ψ in Eq. (2.15), we get

s⟨r2∥⟩s = 2D/s + 2v0⟨xux⟩s. (2.28)

To proceed, we again consider ψ = xux in Eq. (2.15), giving ⟨ψ⟩0 = 0, ∇2ψ = 0,

∇2
uψ = −(d− 1)xux, û ·∇ψ = u2

x, to get s⟨xux⟩s = −(d− 1)Dr⟨xux⟩s + v0⟨uxux⟩s
leading to

⟨xux⟩s =
v0

s+ (d− 1)Dr

⟨uxux⟩s. (2.29)

At this stage we need to calculate ⟨u2
x⟩. Using ⟨u2

x⟩0 = 1, ∇2u2
x = 0, ⟨∇2

uu
2
x⟩s =

−2d⟨u2
x⟩s + 2/s, û ·∇u2

x = 0 in Eq. (2.15) we find

⟨uxux⟩s =
(s+ 2Dr)

s(s+ 2dDr)
. (2.30)
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In calculating ⟨∇2
uu

2
x⟩s we used the general relation

∇2
u(uiuj) = −2d uiuj + 2δij. (2.31)

To derive this, let us consider uiuj = rirj/r
2 and ∇2 = ∂2

r + (1/r2)∇2
u. Note that

this Laplacian ∇2 operates on the active orientation, not on the position vector

of the particle. If f is a function of û alone, ∇2f = (1/r2)∇2
uf . It is easy to

directly calculate ∇2(rirj/r
2) component- wise in cartesian coordinates. The result

∇2(rirj/r
2) = −2d rirj/r

4 + (2/r2)δij then leads to Eq. (2.31).

Using Eqs. (2.28), (2.29), and (2.30), we obtain

⟨r2∥⟩s =
2D

s2
+

2v20(s+ 2Dr)

s2(s+ (d− 1)Dr)(s+ 2dDr)
. (2.32)

Performing inverse Laplace transform one finds

⟨r2∥⟩ = 2

(
D +

v20
(d− 1)dDr

)
t

+
v20
D2

r

(
(d− 1)e−2dDrt

d2(d+ 1)
+
2(3− d)e−(d−1)Drt

(d− 1)2(d+ 1)
+

d2 − 4d+ 1

(d− 1)2d2

)
. (2.33)

This can be used to calculate the relative fluctuations ⟨δr2∥⟩ = ⟨r2∥⟩ − ⟨r∥⟩2 and

⟨δr2⊥⟩ = ⟨r2⊥⟩ = ⟨r2 − r2∥⟩, since ⟨r⊥⟩ = 0. They are given by

⟨δr2∥⟩ = 2

(
D +

v20
(d− 1)dDr

)
t

+
v20
D2

r

(
(d− 1)e−2dDrt

d2(d+ 1)
+

8e−(d−1)Drt

(d− 1)2(d+ 1)
− e−2(d−1)Drt

(d− 1)2
− 4d− 1

(d− 1)2d2

)
, (2.34)

⟨δr2⊥⟩ = 2(d− 1)

(
D +

v20
(d− 1)dDr

)
t

+
v20
D2

r

(
4e−(d−1)Drt

d2 − 1
− (d− 1)e−2dDrt

d2(d+ 1)
− 3d− 1

d2(d− 1)

)
. (2.35)

In two dimensions (d = 2) the mean squared displacements of the parallel and
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Figure 2.10: (color online) The plots of ⟨δr2∥⟩ and ⟨δr2⊥⟩ as a function of time t in two
dimension. Dr = 1.0 τ−1

u , D = 1.0σ2/τu are held constant. The data for v0τu/σ =
1 (□), 130 (◦) are shown in the two figures. The dashed lines show plots of ⟨δr2∥⟩ and
⟨δr2⊥⟩ obtained from Eq. (2.36) and (2.37). For the expressions of t∥I,II and t⊥I,II , see the
discussion after Eq. (2.38). The solid lines in the figures denote the intermediate scaling.

perpendicular components simplify to

⟨δr2∥⟩ = 2

(
D +

v20
2Dr

)
t+

v20
D2

r

(
1

12
e−4Drt − e−2Drt +

8

3
e−Drt − 7

4

)
, (2.36)

⟨δr2⊥⟩ = 2

(
D +

v20
2Dr

)
t+

v20
D2

r

(
− 1

12
e−4Drt +

4

3
e−Drt − 5

4

)
. (2.37)

For D = 0, these agree with the results obtained in [87]. In Fig. (2.10) we show a

comparison of these analytic estimates with numerical simulations of ABP model at

two different propulsion velocities v0, in 2d. The analytic expressions of Eq. (2.36)

and (2.37) are plotted by lines, and the simulation results by points. The results

agree with each other. In the long time limit, both the components, ⟨δr2∥⟩ and

⟨δr2⊥⟩, show the same diffusive scaling ∼ t. However, at shorter time their respective

behaviors differ. We can further use the analytic expressions to extract the observed

crossovers in the dynamics of figure2.10. Performing an expansion around t = 0 in

2d we find,

⟨δr2∥⟩ = 2Dt+
1

3
v20D

2
rt

4 − 7

15
v20D

3
rt

5 +O(t6),

⟨δr2⊥⟩ = 2Dt+
2

3
v20Drt

3 − 5

6
v20D

2
rt

4 +O(t5). (2.38)

28



Chapter 2

The parallel component ⟨δr2∥⟩ first crosses over from ∼ t to ∼ t4 at t∥I = (6/λ2)1/3τr

followed by another crossover to ∼ t at t∥II ≈ (5/7)τr independent of the amount of

active drive λ = v0/
√
DDr. Note that both the crossovers will be observable only

if t∥II > t
∥
I , requiring λ > 4.1.

The transverse fluctuations ⟨δr2⊥⟩ first crosses over from ∼ t to ∼ t3 scaling at

t⊥I = [3/λ2]1/2τr followed by another crossover to ∼ t at t⊥II ≈ (4/5)τr independent

of λ. These two crossovers will be observable if t⊥II > t⊥I , requiring λ > 2.2. We

present simulation results in 2d, and their comparison with analytic expressions in

Fig. (2.10). In this figure, both the above mentioned conditions are satisfied for

λ = 130, and broken for λ = 1. As a result, we observe the two crossovers only

at λ = 130 in Fig. (2.10)(a) and (b). Whereas, the same figures for λ = 1 shows

approximate diffusive scalings all through. The lines through the simulation results

are plots of Eqs. (2.36) and (2.37). As is evident from Eq. (2.38), in the absence of

translational diffusion, the short time scaling behaviors are dominated by ⟨δr2∥⟩ ∼ t4

and ⟨δr2⊥⟩ ∼ t3, as was already been pointed out in [87].

2.8 Quartic order moment

The calculation of ⟨r4⟩ involves the following steps: (i) s⟨r4⟩s = 4(d + 2)D⟨r2⟩s +
4v0⟨(û · r)r2⟩s, evaluating which requires us to consider the equation (ii) [s + (d −
1)Dr]⟨(û · r)r2⟩s = (4+ 2d)D⟨û · r⟩s + v0⟨r2⟩s +2v0⟨(û · r)2⟩s. This in turn requires

us to consider the equation (iii) (s+2dDr)⟨(û · r)2⟩s = 2D
s
+2Dr⟨r2⟩s +2v0⟨û · r⟩s.

Using Eq. (2.31) one can show that ∇2
u[(û · r)2] = 2r2 − 2d(û · r)2. The expressions

for ⟨û · r⟩s and ⟨r2⟩s were already evaluated in Eqs. (2.21) and (2.22). Thus one can

use all these steps to complete the calculation leading to

⟨r4⟩s =
8

s3

[
d(d+ 2)D2 +Dv20

(d+ 2)(3s+ 2(d− 1)Dr)

(s+ (d− 1)Dr)2

+v40
3s+ 2(d+ 2)Dr

(s+ (d− 1)Dr)2(s+ 2dDr)

]
. (2.39)
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Apart from the factor d(d+2) in the first term, this agrees with Eq. (34) of Ref. [10].

Note that this result is independent of the initial orientation û0 and so the difference

persists even after averaging over initial conditions. Performing the inverse Laplace

transform, we obtain the time evolution of the fourth moment in d-dimensions,

⟨r4(t)⟩ = 4(d− 1)v40e
−2dDrt

d3(d+ 1)2D4
r

− 8 (d2v40 + 10dv40 + 25v40) e
−(d−1)Drt

(d− 1)4(d+ 1)2D4
r

+
4 (d3v40 + 23d2v40 − 7dv40 + v40)

(d− 1)4d3D4
r

+
8te−(d−1)Drt (d3DDrv

2
0 + 2d2DDrv

2
0 − dDDrv

2
0 + dv40 − 2DDrv

2
0 − 7v40)

(d− 1)3(d+ 1)D3
r

+
4t2 (d5D2D2

r − 3d3D2D2
r + 2d3DDrv

2
0 + 2d2D2D2

r + 2d2DDrv
2
0 − 4dDDrv

2
0 + dv40 + 2v40)

(d− 1)2dD2
r

− 8t (d4DDrv
2
0 + d3DDrv

2
0 − 2d2DDrv

2
0 + d2v40 + 6dv40 − v40)

(d− 1)3d2D3
r

. (2.40)

Again in d = 2 the relation simplifies to

⟨r4(t)⟩ = 8t2 (4D2D2
r + 4DDrv

2
0 + v40)

D2
r

+
8te−Drt (12DDrv

2
0 − 5v40)

3D3
r

− 2t (16DDrv
2
0 + 15v40)

D3
r

+
v40e

−4Drt

18D4
r

− 392v40e
−Drt

9D4
r

+
87v40
2D4

r

. (2.41)

For D = 0 this agrees with the expression in [93] and we have also verified that our

result for d = 3 agrees with [91]. Eq. (2.41) is plotted by dashed lines in Fig. (2.11).

As is clearly seen from the figure, the two dimension simulation data (points) agree

well with this analytic expression. In the limit of t ≫ 1/Dr, the first term in the

above expression dominates to give ⟨r4(t)⟩ ∼ t2. The change in scaling with t as

observed from the figure can be better understood by considering the expansion of

the expression in Eq. (2.41) around t = 0,

⟨r4(t)⟩ = 32D2t2 + 16Dv20t
3 +

(
v20 −

16

3
DDr

)
v20t

4 − 2

3
v20Dr

(
v20 − 2DDr

)
t5 +O(t6).

This relation shows that at smallest time ⟨r4(t)⟩ ∼ t2, which crosses over to ⟨r4(t)⟩ ∼
t3 at tI = (2/λ2)τr. A second crossover from ∼ t3 to ∼ t4 may appear at tII =

[48/(3λ2 − 16) ]τr provided λ2 > 16/3. At a longer time, tIII ≈ 1
2
3λ2−16
λ2−2

τr the
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Figure 2.11: (color online) Evolution of the ratio ⟨r4⟩/t2 with time in 2d. Dr = 1.0 τ−1
u

andD = 1.0σ2/τu are held constant. The points denote simulation results, and the dashed
lines denote analytic prediction in Eq. (2.41). (a) v0 = 3σ/τu shows two crossovers at
tI = 0.22 τr, tII = 4.36 τr , (b) v0 = 10σ/τu shows three crossovers at crossover times
tI ≈ 0.02 τr, tII = 0.17 τr and tIII = 1.45 τr. The black solid lines in the two curves
indicate the intermediate scaling behaviors.

time-dependence is expected to show a third cross- over back to ⟨r4(t)⟩ ∼ t2. It is

clear that whether all these crossovers will be observable depends on the activity

parameter λ. For example, the requirement to observe the third crossover tIII > tII

is satisfied only when λ2 > 56/3. As can be seen from Fig. (2.11)(a), ⟨r4⟩ shows

∼ t2 to ∼ t3 crossover at tI , and a direct crossover back to ∼ t2 beyond tII at

v0 = 3 σ/τu that obeys the condition λ2 < 56/3. On the other hand Fig. (2.11)(b)

at v0 = 10 σ/τu, satisfying the condition λ2 > 56/3, clearly shows all the three

crossovers discussed above. The crossover points indicated in the figures correspond

to the expressions derived above.

Moreover, the expression for the fourth moment of the persistent walk cor-

responding to the WLC polymer in d-dimensions is easily obtainable by setting

D = 0 in Eq. (2.39),

⟨r4⟩s = 8v40
3s+ 2(d+ 2)Dr

s3(s+ (d− 1)Dr )2 (s+ 2dDr )
. (2.42)

The inverse Laplace transform of this relation gives the evolution,

31



Chapter 2

⟨r4(t)⟩ = 4v40

(
(d− 1)e−2dDrt

d3(d+ 1)2D4
r

− 2 (d+ 5)2 e−(d−1)Drt

(d− 1)4(d+ 1)2D4
r

− 2 (d2 + 6d− 1) t

(d− 1)3d2D3
r

+
(d3 + 23d2 − 7d+ 1)

(d− 1)4d3D4
r

− 2(7− d) te−(d−1)Drt

(d− 1)3(d+ 1)D3
r

+
(d+ 2) t2

(d− 1)2dD2
r

)
. (2.43)

Replacing κ = v0/2Dr, l = v0t provides the well known result for ⟨r4(l)⟩ of WLC

model [93].

2.9 End- to- end distribution with chain length

In the equivalent polymer model, the dynamical crossovers with observation time

τ translate into similar behavior of the end-to-end separation ⟨r2⟩ with increasing

contour length L = v0τ for a polymer with a given A = v0/2D and κ = v0/2Dr. In

Fig. (2.12) we plot the distribution functions p(r̃) of the scaled separation r̃ = r/L.

For the given choice of parameters, Dr = 1.0τ−1
u , v0 = 10 σ/τu and D = 0.1 σ2/τu,

the persistence length of such a chain in 2d is ℓp = v0/Dr = 103 ℓ̄, where ℓ̄ =
√
D/Dr = 10−2σ. As is clear from Fig. (2.12)(a), for the smallest chain lengths,

L < ℓ̄, the distribution shows a Gaussian profile. In this regime, the dynamics of the

corresponding ABP model remains dominated by the translational diffusion, and

⟨r2⟩ ≈ 2dDt. Equivalently, the polymer conformations remain dominated by the

bond length fluctuations. With increasing contour length (time for ABP model),

first the maximum at r̃ ≈ 0 starts to flatten as L approaches ℓ̄ (Fig. (2.12)(b) ). For

longer contours, L = 10 ℓ̄, 100 ℓ̄, the peak shifts towards r̃ ≈ 1 (Fig. (2.12)(c), (d) ).

The bending rigidity starts to dominate the polymer conformations in this regime.

In this model, for the persistence to start to dominate the polymer morphology, a

relatively long chain is required. This behavior contrasts the current model from the

WLC polymer, where the chain transforms from a rigid rod to flexible chain behavior

monotonically, with increasing chain length. For longer chains, the position of the

peak in p(r̃) fails to catch up to L as a result of effective polymer softening. This
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Figure 2.12: (color online) The displacement distributions atDr = 1.0 τ−1
u , v0 = 10σ/τu

and D = 0.1σ2/τu over different time-segments indicated by the v0t values shown in
the figures. The persistence length of the mapped polymer ℓp = 103ℓ̄. The length of
trajectories considered are L = 0.1 ℓ̄ (a), 1.0 ℓ̄ (b), 10 ℓ̄ (c), . . . , 104ℓ̄ (f).

behavior is reminiscent of the WLC polymer. At L = 103ℓ̄ ≡ ℓp, the peak shifts to

a shorter relative separation r̃ ≈ 900ℓ̄/L ≲ 1 (Fig. (2.12)(e) ). For longest chains,

L ≫ ℓp, the distribution gets back to an approximate Gaussian shape with the

maximum shifting back to r̃ = ℓp/L ≈ 0 (Fig. (2.12)(f) ). This regime corresponds

to ⟨r2⟩ = 2dDefft of the ABP model.

Fig. (2.13) shows the full two-dimensional end-to-end distribution function p(x̃, ỹ)

as a contour plot. Here x̃ = x/L and ỹ = y/L. It is evident how the symmetry

of the distribution changes with increasing contour-length of the polymer. With

L, the peak shifts towards positive x-axis, the orientation of the first end of the

polymer, but the distribution around the peak remains circularly symmetric up

to L = 10 ℓ̄ (Fig. (2.13)(a), (b), and (c) ). Beyond this point, even around the

peak, the distribution gets rotationally asymmetric, opening up as a partial ring-

like structure at L = ℓp = 103ℓ̄ (Fig. (2.13)(d), (e) ). For the longest chain of

L = 104ℓ̄, the distribution recovers its spherical symmetry and gets back to the

Gaussian profile (Fig. (2.13)(f) ). It is interesting to note that in terms of the

rigidity parameter L/ℓp the last two values of L falls at ℓp and 10 ℓp. For the chain
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Figure 2.13: (color online) The 2d displacement distributions p(x̃, ỹ) at Dr = 1.0 τ−1
u ,

v0 = 10.0σ/τu and D = 0.1σ2/τu over different time segments τ , presented as heat maps.
The length of trajectories considered are L = v0τ = 0.1 ℓ̄ (a), 1.0 ℓ̄ (b), 10 ℓ̄ (c), . . . , 104ℓ̄ (f).
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Figure 2.14: (color online) The change in distributions p(r̃) [(a) − (c)] and p(x̃, ỹ)
[(d)−(f)] at Dr = 1.0 τ−1

u , v0 = 10.0σ/τu and D = 0.1σ2/τu for different contour lengths
L = v0τ in the regime of bimodality. The persistence length ℓp = 103ℓ̄. The length of
trajectories considered are L = 3ℓp [(a), (d)] 3.5ℓp [(b), (e)], 4ℓp [(c), (f)].

in consideration, the effective spring-stiffness of the bonds A = v0/2D = 50σ−1 is

large enough to suppress bond-length fluctuations to within 7%, allowing an ap-

proximate WLC description of the effective chain. The WLC polymer is known

to show a rigid rod to Gaussian transition mediated by a bistable region between
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1 < L/ℓp < 10 (near L/ℓp ≈ 3 − 4) [93, 94]. We find a similar transition through

bistability at L/ℓp = 3.5 (Fig. (2.14)). The distributions obtained in Fig. (2.14) are

reminiscent of the property of WLC polymer with one end tethered towards a fixed

orientation [94].

2.10 Differentiation of ABP with active Ornstein-Uhlenbeck

process(AOUP)

In experiments often one encounters a question as to which model is better suited to

describe the observed spatiotemporal behavior of self propelled colloids [12]. Active

Brownian particles (ABP), or a related model of active Ornstein-Uhlenbeck process

(AOUP) are used sometimes for such descriptions.

2.10.1 AOUP model and calculation of moments

The over-damped motion in AOUP model is given by [8]

ṙ = v +
√
2D η(t)

v̇ = −γv +
√
2Dv η

v(t). (2.44)

The Gaussian random processes are defined by ⟨ηi⟩ = 0, ⟨ηi(t)ηj(t′)⟩ = δijδ(t− t′),

⟨ηvi ⟩ = 0, ⟨ηvi (t)ηvj (t′)⟩ = δijδ(t − t′), where i, j denote components of the vectors.

We assume η and ηv to be independent random processes. Given the Gaussian

nature of the AOUP, it is straightforward to derive analytic expressions, including

the probability distributions describing its dynamics [8]. The distribution function

p(r(t), v(t), t | r(0), v(0) ) for a given initial condition denoted by r(0), v(0) can be

obtained from the knowledge of the first two cumulants. Directly solving Eq. (2.44)
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one can obtain the moments

⟨r⟩ = v(0)
γ

(
1− e−γt

)
, (2.45)

⟨v⟩ = v(0) e−γt, (2.46)

⟨r2⟩ = 2dDt+
2dDv

γ3

[
γt− (1− e−γt)

]
+ ⟨r⟩2 − dDv

γ3

(
1− e−γt

)2
, (2.47)

⟨v2⟩ = v2(0) e−2γt +
dDv

γ

(
1− e−2γt

)
, (2.48)

⟨v · r⟩ = v2(0)

γ

(
1− e−γt

)
e−γt +

dDv

γ2
(1− e−γt)2 . (2.49)

2.10.2 Comparision with ABP

We make the following identifications between AOUP and ABP parameters:

v2(0) = v2
0, γ = (d− 1)Dr,

dDv

γ
= v2

0. (2.50)

Then we see that the evolution of all the moments computed in Eqs. (2.45), (2.46),

(2.47), (2.48), and (2.49) have exactly the same form as those obtained for the ABP.

In particular we see that Eq. (2.47) simplifies to the form

⟨r2⟩ = 2dDt+
2dDv

γ3

[
γt− (1− e−γt)

]
. (2.51)

which can be compared with that for ABP obtained in Eq. (2.23), when γ and Dv

are interpreted using Eq. (2.50). Similarly, after simplification ⟨v2⟩ = v2(0), and

⟨v · r⟩ = [v2(0)/γ] (1− e−γt).

2.10.3 Kurtosis : deviation from Gaussian process

The ABP and AOUP models can thus be clearly distinguished only in terms of

higher moments. Let us first evaluate the fourth moment ⟨r4⟩ for a general Gaussian

process (such as the AOUP) in terms of the lower order moments. For this, we write
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r = δr + ⟨r⟩ so that

⟨r4⟩ = ⟨(δri + ⟨ri⟩)2 (δrj + ⟨rj⟩)2⟩

= ⟨δr2i δr2j ⟩+ 2⟨δr2i ⟩⟨rj⟩2 + 4⟨ri⟩⟨rj⟩⟨δriδrj⟩+ ⟨ri⟩2⟨rj⟩2.

Using Wick’s theorem for Gaussian variables,

⟨δr2i δr2j ⟩ = ⟨δr2i ⟩⟨δr2j ⟩+ 2⟨δriδrj⟩2,

we then get

⟨r4⟩ = ⟨δr2⟩2 + 2⟨δriδrj⟩2 + 2⟨δr2⟩⟨r⟩2 + 4⟨ri⟩⟨rj⟩⟨δriδrj⟩+ ⟨r⟩4. (2.52)

This relation is true for any Gaussian process. Let us define the functional on the

right hand side of the above equation as a generalized moment for an arbitrary

process, not necessarly Gaussian, and denote it by

µ4 := ⟨δr2⟩2 + 2⟨δriδrj⟩2 + 2⟨δr2⟩⟨r⟩2 + 4⟨ri⟩⟨rj⟩⟨δriδrj⟩+ ⟨r⟩4. (2.53)

From our explicit solution for the ABP and AOUP we find that

⟨δri(t)δrj(t)⟩ =
δij
d
⟨δr2⟩. (2.54)

Replacing this relation in Eq. (2.52) we obtain

µ4 = ⟨r2⟩2 + 2

d

(
⟨r2⟩2 − ⟨r⟩4

)
. (2.55)

Note that for AOUP we would have ⟨r4⟩ = µ4 but this would not be the case for

ABP.

In Eq. (2.40) we have already computed the explicit form of ⟨r4⟩ for ABP. It is
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Figure 2.15: (color online) Deviation from Gaussian nature in terms of K is shown
as a function of time t expressed in units of τr = 1/Dr. The translational diffusion
D = 1.0σ2/τu is held constant. (a)Plot with Dr = 1.0 τ−1

u for v0 τu/σ = 0, 1, 3, 10.
(b)Plot at v0 = 10σ/τu for Drτu = 1, 5, 10, 20.

then straightforward to evaluate the kurtosis in d-dimensions defined as

K =
⟨r4⟩
µ4

− 1. (2.56)

By definition, this quantity is identically zero for the AOUP. In Fig. (2.15) we show

plots of K obtained for the ABP model, using our analytical expressions for ⟨r4⟩, and

that of ⟨δr2⟩, and ⟨r⟩. The kurtosis was calculated numerically in earlier studies of

ABP [8, 9]. The two plots in Fig. (2.15) show variation of K with time for different

amount of activity, measured in terms of active speed v0 (a) and rotational diffusion

of active orientation Dr (b). The plots in Fig. (2.15) show the time dependence of

K at fixed translational diffusion D = 1.0 σ2/τu. At v0τu/σ = 0, the ABP motion is

the same as equilibrium diffusion showing K = 0 in Fig. (2.15)(a). With increasing

v0 the deviation from Gaussian nature characterized by the amplitude of K becomes

more pronounced and prevails for longer duration in time. Beyond v0 = 100 σ/τu

the Kurtosis touches a maximum amplitude of K ≈ −0.4, and the curve does not

change appreciably with further increases in v0. On the other hand, as is shown in

Fig. (2.15)(b), the deviation from zero of K reduces with increasing orientational

diffusion Dr, better randomizing the orientation of activity bringing the evolution

back towards equilibrium behavior. Over long enough time the trajectories behave

as that of diffusion, leading to K = 0 for all v0.
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The measure K, in terms of ⟨r4⟩, ⟨δr2⟩ and ⟨r⟩, is easily obtainable from ob-

served trajectories of self propelled colloids. This would suffice to deduce if the

properties shown by a self propelled particle is better described by the AOUP or

the ABP model, depending on whether K remains vanishingly small all through the

evolution, or deviates from zero significantly in the intermediate time window as

in ABP. Clearly, this measure requires much less information with respect to the

measurement of the complete distribution functions proposed in [12].

2.11 Conclusions

In this chapter, we studied free ABPs in the presence of translational thermal noise.

We have established a mapping of the ABP trajectories to an equivalent polymer

model. The bond stiffness and bending rigidity of the mapped polymer are deter-

mined by the active speed, orientational diffusion, and thermal noise in the ABP

model. In the limit of vanishing orientational diffusivity, the ABP trajectories map

to a Gaussian polymer under directed external force. The other limit of vanishing

translational diffusion in the ABP, reduces the mapped polymer to the well known

WLC model of the semiflexible chain. Comparisons of the distribution functions

for non-equilibrium displacements in ABP, and the end-to-end separations in the

equilibrium polymer model showed good agreement. Remarkably, with increas-

ing trajectory length the mapped polymer undergoes re-entrant transitions from

a Gaussian chain, to rigid filament, back to a Gaussian chain via a pronounced

bimodality which is a characteristic of the semiflexible polymer.

Secondly, we have shown how arbitrary moments of the position and active

orientation vectors of ABPs in arbitrary dimensions can be calculated using the

governing Fokker-Planck equation. For this we utilized a Laplace transform ap-

proach used earlier for the WLC model [91]. Our calculation differs significantly

from other recent analytic approaches employed for ABPs [10, 87, 88]. The expres-

sions for moments that we obtained were compared against numerical simulations,

and have been utilized to analyze all the observed dynamical crossovers. Finally,
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we derived an analytical expression for the kurtosis of position vector for ABPs,

and have shown how it differs from a related AOUP model. This can be utilized

to analyze observed trajectories of self propelled colloids, to identify if they can be

described by the AOUP, or are better described by the ABP model.

40



3

Active Brownian particle: fluctuation

in the speed

3.1 Introduction

Examples of self propelled entities are abound in nature [2, 3]. They range from

sub-micron scale elements like motor proteins [33, 34], bacteria [99, 100] and other

motile cells [42–44] to macro-scale entities like birds and animals [46]. The examples

of artificial active elements, while restricted, are increasing with time – they include

colloidal microswimmers, active rollers, vibrated rods and asymmetric disks [2, 3].

Motile cells often perform persistent motion and can sense and respond to extra-

cellular chemical signals [101]. The directed motion under such guidance cues has

been analyzed in experiments [102, 103]. The energy pump generating self propul-

sion, be it in motile cells or in active colloids, involves stochastic processes and

thus the active speed appears with inherent fluctuations [30, 79, 101]. Moreover,

analysis of the dynamics of a tracer particle in an interacting system of active Brow-

nian particles (ABP) with individual particles self propelling with a constant active

speed requires consideration of speed fluctuations, as (i) in an assembly of ABPs

inter-particle collision changes the speed of an individual particle in the heading

direction [104, 105], (ii) in an active polymer, the active speed of individual bonds
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and as a result that of its center of mass undergoes fluctuations due to bonding,

bending and self-avoidance [106, 107]. In the previous chapter, when we considered

the dynamics of ABPs, we ignored this speed fluctuation and focussed primarily on

the directional fluctuations in active orientation.

In this chapter, we consider the Schienbein-Gruler type active speed genera-

tion [15, 101] for ABPs. This involves an Ornstein-Uhlenbeck process leading to

speed fluctuations around a well-defined mean, unlike the constant active speed as-

sumed in the previous chapter. The heading direction of self-propulsion undergoes

orientational diffusion, as before. In addition, the motion of ABPs are influenced by

translational thermal noise. We extend the Fokker-Planck equation based method

presented in the previous chapter to obtain arbitrary moments of the dynamics

of speed-fluctuating ABPs in general d-dimensions, both in the presence and ab-

sence of external directed force that can generate a directed motion in the long

time limit. The competition between the speed relaxation time with other time-

scales, e.g., the persistence time leads to new crossovers. The direct calculation

presented here allows for coevolution of different dynamical variables and does not

require any time-scale separation. Our general results for mean squared displace-

ments when interpreted for two-dimensions agree with Ref. [15, 108] when a clear

time-scale separation for speed fluctuations is applicable, such that one can use the

steady state speed correlation. We, in particular, analyze the changes due to the

speed fluctuations, e.g., the short time asymmetric fluctuations in the ABP dis-

placements. The analysis shows an intermediate time regime of clear sub-diffusive

scaling in the positional fluctuations parallel to the starting orientation, a behav-

ior that disappears in the limit of constant active speed. The main achievements

of this chapter are the following: (i) We derive the second and fourth moment of

displacement vector, its fluctuations, and fluctuations in its projection along the

initial heading direction and in directions perpendicular to it. (ii) We show and

analyze the presence of multiple crossovers in the mean-squared displacement and

fluctuations of displacement vectors. (iii) We show that in the intermediate time-

scales, the kurtosis of displacement vector measuring the deviations from possible
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normal distributions changes between positive and negative values before returning

to Gaussian behavior at long times, controlled by the competition between speed

and orientational fluctuations.

The chapter is organized as follows. In Section-3.2, we describe the model. In

Section-3.3, we present the Laplace transform method starting from the Fokker-

Planck equation to derive the general equation to calculate arbitrary moments of

dynamical variables in d-dimensions. In the following sections we present calcu-

lations of particular quantities of interest: (a) the mean speed and speed fluctu-

ations (Section-3.4), (b) the speed, orientation and velocity auto-correlation func-

tions (Section-3.5), (d) the mean-squared displacement and displacement fluctua-

tions (Section-3.6). In each case, we discuss separately the dynamical properties

in the absence and presence of external directed drive. In Section-3.7, we calcu-

late the fourth order moments of displacement and the kurtosis to characterize the

non-Gaussian nature of displacement fluctuations. The kurtosis shows positive and

negative maxima in time corresponding to relaxations of speed and orientational

fluctuations. While the speed fluctuations enter as a bond-length fluctuations, the

external directed force on ABPs enters the polymer model to stretch each bond

along the force direction locally. Finally, in Section-3.8 we summarize our results

and conclude.

3.2 Model

The active Brownian particle (ABP) with fluctuating speed in d-dimension is de-

scribed by its position r = (r1, r2, . . . , rd) and its velocity v represented by the

speed v and orientation û = (u1, u2, . . . , ud), which is a unit vector in d-dimensions.

Let the infinitesimal increments at time t are denoted by dri = ri(t + dt) − ri(t),

dv = v(t + dt)− v(t), and dui = ui(t + dt)− ui(t). In Ito convention [97, 98, 109],
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the equation of motion of the ABP with stochastic change of speed is given by

dri = v(t)ui dt+ µFi dt+ dBt
i(t), (3.1)

dv = −γv(v − v0) dt+ dBs(t), (3.2)

dui = (δij − uiuj) dB
r
j (t)− (d− 1)Drui dt. (3.3)

Eq. (3.1) represents time evolution of position of the particle. The first term on

the right-hand side contains the active time dependent speed v(t) and orientation

û(t). These two variables evolve independently. The second term on the right-hand

side is due to an external force providing a long-time directed motion. The third

term denotes a translational diffusion due to thermal fluctuations modeled by a

Gaussian white noise dBt with mean zero and variance ⟨dBt
idB

t
j⟩ = 2Dδij dt.

Eq. (3.2) represents generation of the active speed via an Ornstein-Uhlenbeck

process. The relaxation time for speed fluctuations around the mean value v0

is given by γ−1
v . The Gaussian stochastic process dBs(t) obeys ⟨dBs(t)⟩ = 0,

⟨dBsdBs⟩ = 2Dvdt, with Dv governing the amount of fluctuations. This process

does not ascertain a positive speed always, with larger Dv allowing for larger fluc-

tuations and as a result larger excursions towards negative speed with respect to

the heading direction. Here, it is instructive to note that such fluctuations with

an effective negative speed can arise, e.g., in an assembly of repulsively interacting

ABPs [104, 105] due to increased frontal collisions with increasing particle density.

The probability of negative speed increases with increase of the ratio Dv/γv and

decreases with increasing v0 ( see Fig. 3.13 in Appendix-3.9.2 ).

Eq. (3.3) represents the orientational diffusion of the heading direction. The

Gaussian white noise dBr have mean zero and variance ⟨dBr
i dB

r
j ⟩ = 2Drδij dt.

Alternatively, we can write this equation in the Stratonovich form dui = (δij −

44



Chapter 3

−300

−200

−100

0

−100 0 100

(a)

−100

0

100

200

300

400

0 200 400 600

(b)
y
/�̄

x/�̄ x/�̄

Figure 3.1: (color online) Typical ABP trajectories in two-dimensions (2d) over a du-
ration t = 100 τr are shown in the absence (a) and (b) presence of external drive: (a)
Persistent motion at F̃0 = 0, (b) Directed persistent motion at F̃0 = 5 r̂ with r̂ = x̂+ ŷ in
cartesian coordinates. The plots use Pe = 20, D̃v = 1, and γ̃v = 1. The blue point with
arrow in each plot shows starting position and orientation of the ABP. In these plots we
used the initial active speed v1 = v̄P e and heading direction û0 = x̂ along the x-axis.

uiuj) ◦ dBr
j (t). The form of Eq. (3.3) ensures the normalization u2 = 1 at all times.

It is straightforward to perform a direct numerical simulation of Eqs. (3.1), (3.2),

and (3.3) using the Euler-Maruyama integration to generate trajectories as illus-

trated in Fig. (3.1). A typical trajectory in the absence of external force is shown in

Fig. (3.1)(a) and in the presence of constant external force is shown in Fig. (3.1)(b).

We set τr = 1/Dr as the unit of time, and ℓ̄ =
√
D/Dr as the unit of length.

All the speeds and velocities are expressed in units of v̄ = ℓ̄/τr =
√
DDr. The di-

mensionless quantities controlling speed-fluctuation and speed-relaxation are D̃v =

Dvτr/v̄
2 = Dv/DD2

r and γ̃v = γv/Dr. The mean active speed is expressed as a

dimensionless Péclet number Pe= v0/v̄ = v0/
√
DDr. The dimensionless external

drive is F̃ = µF/v̄.
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3.3 Calculation of moments from Fokker-Planck equa-

tion

In this section, we present a general framework for the calculation of arbitrary

moments [107, 109]. The probability distribution P (r, v, û, t) of the position r, the

speed v(t) and the active orientation û of the particle follows the Fokker-Planck

equation

∂tP (r, v, û, t) = D∇2P +Dr∇2
uP +Dv∂

2
vP − v û ·∇P + γvP

+ γv(v − v0)∂vP − µF ·∇P (3.4)

where ∇ is the d-dimensional Laplacian operator, and ∇u is the Laplacian in the

(d− 1) dimensional orientation space, F is the directed constant force.

In terms of the Laplace transform P̃ (r, v, û, s) =
∫∞
0

dt e−st P (r, v, û, t), the

Fokker-Planck equation takes the form,

− P (r, v, û, 0) + (s− γv)P̃ (r, v, û, s) = D∇2P̃ +Dr∇2
uP̃ +Dv∂

2
v P̃

− v û ·∇P̃ + γv(v − v0)∂vP̃ − µF ·∇P̃ .

Defining the mean of an observable ⟨ψ⟩s =
∫
dr dv dûψ(r, v, û)P̃ (r, v, û, s), multi-

plying the above equation by ψ(r, v, û) and integrating over all possible (r, v, û) we

obtain,

− ⟨ψ⟩0 + (s− γv)⟨ψ⟩s = D⟨∇2ψ⟩s +Dr⟨∇2
uψ⟩s +Dv⟨∂2

vψ⟩s + ⟨v û ·∇ψ⟩s
− γv⟨∂v[(v − v0)ψ]⟩s + µ⟨F ·∇ψ⟩s,

where the initial condition sets ⟨ψ⟩0 =
∫
dr dv dûψ(r, v, û)P (r, v, û, 0). This equa-
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tion simplifies to

− ⟨ψ⟩0 + s⟨ψ⟩s = D⟨∇2ψ⟩s +Dr⟨∇2
uψ⟩s +Dv⟨∂2

vψ⟩s + ⟨v û ·∇ψ⟩s
− γv⟨(v − v0)∂vψ⟩s + µ⟨F ·∇ψ⟩s. (3.5)

Without any loss of generality, we consider the initial condition P (r, v, û, 0) =

δ(r)δ(v − v1)δ(û − û0), where v1 is a speed that in general is different from v0.

Eq. (3.5) can be utilized to compute exact moments of any dynamical variable in

d-dimensions as a function of time.

3.4 Active speed

In this section, we first calculate the average active speed and speed fluctuations.

We show how the speed fluctuations saturate over a long time. Next we calculate

two-time auto-correlation functions for the heading direction, active speed, and

finally for ABP velocity.

3.4.1 Mean speed

To calculate the evolution of active speed, we use ψ = v and the initial condition

⟨ψ⟩0 = v1 in Eq. (3.5). Other terms required for the calculation are: ⟨∇2ψ⟩s = 0,

⟨∇2
uψ⟩s = 0, ⟨∂2

vψ⟩s = 0, ⟨vû · ∇ψ⟩s = 0, ⟨F · ∇ψ⟩s = 0, ⟨(v − v0)∂vψ⟩s =

⟨v⟩s − v0⟨1⟩s = ⟨v⟩s − v0/s. In the last relation we used ⟨1⟩s =
∫
dr dû dvP̃ =

∫
dr dû dv

∫∞
0

dt e−stP =
∫∞
0

dt e−st{dr dû dvP} =
∫∞
0

dt e−st = 1/s. Thus from

Eq. (3.5), we get ⟨v⟩s = v1/(s+γv)+v0γv/s(s+γv). The inverse Laplace transform

of this relation gives

⟨v⟩(t) = v1e
−γvt + v0(1− e−γvt). (3.6)

At the long time limit of t ≫ γ−1
v this gives the steady state value ⟨v⟩ = v0.
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Figure 3.2: (color online) Speed fluctuation ⟨δv2⟩ as a function of time t/τr at D̃v = 1
and γ̃v = 1 in 2d for Pe = 0.1(◦), 1(▽), 10(✸). The points are simulation results and the
solid line is a plot of Eq. (3.8).

3.4.2 Speed fluctuation

The speed fluctuations can be calculated using ψ = v2 and the initial condition

⟨ψ⟩0 = v21 in Eq. (3.5). The other terms involved in the calculation are: ⟨∇2ψ⟩s = 0,

⟨∇2
uψ⟩s = 0, ⟨∂2

vψ⟩s = ⟨2⟩s = 2/s, ⟨vû ·∇ψ⟩s = 0, ⟨F ·∇ψ⟩s = 0, ⟨(v − v0)∂vψ⟩s =
2⟨v2⟩s − 2v0⟨v⟩s. Thus, we get from Eq. (3.5), ⟨v2⟩s = (s+ 2γv)

−1[v21 + 2γvv0⟨v⟩s +
2Dv/s]. The inverse Laplace transform gives

⟨v2⟩(t) =
[
v1e

−γvt + v0
(
1− e−γvt

)]2
+

Dv

γv

(
1− e−2γvt

)
. (3.7)

As a result, using Eq. (3.6), the speed fluctuation reads,

⟨δv2⟩ = ⟨v2⟩ − ⟨v⟩2 = Dv

γv

(
1− e−2γvt

)
(3.8)

The direct calculation (see Eq. (3.61) in Appendix-(3.9.1)) utilizing governing Eq. (3.2)

for speed leads to the speed fluctuation same as Eq. (3.8). In the long time limit(

t > 1/2γv), the equation gives the constant fluctuation ⟨δv2⟩ = Dv/γv. Eq. (3.8)

compared with simulation results shown in Fig. (3.2). With the small relaxation

time scale ( large γv) of speed, one can ensure rapid saturation of speed fluctuation
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ensure speed in a small-time( t > 1/2γv) from a Gaussian speed distribution.

3.5 Correlation functions

The evolution of heading direction û is and independent stochastic process, and

thus does not get influenced by the speed fluctuations. The persistence of heading

direction decays as ⟨û(t)⟩ = û0e
−(d−1)Drt and as a result the correlation

⟨û(t) · û(0)⟩ = e−(d−1)Drt, (3.9)

as was shown in the previous chapter. The auto-correlation function of active speed

can be directly calculated from Eq. (3.2) as is shown in Appendix-3.9.1,

⟨δv(t1)δv(t2)⟩ =
Dv

γv

[
e−γv |t1−t2| − e−γv(t1+t2)

]
, (3.10)

where δv(t) = v(t) − ⟨v(t)⟩. In the steady state limit of t1, t2 → ∞, writing the

time gap τ = |t1 − t2| one gets the simplified expression

⟨δv(τ)δv(0)⟩ = (Dv/γv)e
−γvτ . (3.11)

Moreover, the velocity correlation can be calculated directly from the Langevin

equations, giving ⟨v(t)⟩ = ⟨v(t)⟩⟨û(t)⟩+µF(t) and ⟨v(t1)·v(t2)⟩ = ⟨v(t1)v(t2)⟩⟨û(t1)·
û(t2)⟩+ 2Dδ(t1 − t2) + µ2F(t1) · F(t2). Thus, direct calculation leads to

⟨v(t1) · v(t2)⟩ =
[
Dv

γv

(
e−γv(t1−t2) − e−γv(t1+t2)

)
+ ⟨v(t1)⟩⟨v(t2)⟩

]
e−(d−1)Dr(t1−t2)

+ 2Dδ(t1 − t2) + µ2F (t1) · F (t2)

The decay of velocity correlation is dictated by two time constants, the speed cor-

relation time γ−1
v and the persistence time of the heading direction D−1

r . The

autocorrelation between fluctuations of velocity δv(t) = v(t) − ⟨v(t)⟩ is given by
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Figure 3.3: (color online) Displacement in the initial orientation ⟨r∥⟩ as a function of
time t at Dvτr/v̄

2 = 1 and γvτr = 1 in 2d for Pe ≡ v0/v̄ = 0.1(◦), 5(▽), 20(✸). The
points denote simulation results, and lines depict ⟨r∥⟩ = ⟨r⟩ · û0 using Eq. (3.14). (a)
Displacements for the persistent ABP in the absence of external force, µF0/v̄ = 0. (b)
Displacements in the presence of external force, µF0/v̄ = r̂. The initial speed and heading
directions are chosen to be v1 = v0 and û0 = x̂, respectively.

⟨δv(t1)δv(t2)⟩. Note that the mean velocity at time t is given by ⟨v(t)⟩ = ⟨v(t)⟩⟨û(t)⟩+
µF (t), where ⟨v(t)⟩ is given by Eq. (3.6) and ⟨û(t)⟩ = û0e

−(d−1)Drt. Therefore,

⟨v(t)⟩ = [v1e
−γvt + v0(1− e−γvt)] û0e

−(d−1)Drt + µF (t). The expression simplifies in

the steady state limit in which ⟨v(t)⟩ = v0, ⟨v(t)⟩ = µF(t), using t1, t2 → ∞ and

writing t1 − t2 = τ we get

⟨δv(τ)δv(0)⟩ =
[
v20 +

Dv

γv
e−γvτ

]
e−(d−1)Drτ + 2Dδ(τ). (3.12)

3.6 Displacement

In this section, we compute various moments of the displacement vector. We begin

by using ψ = r, and initial location ⟨ψ⟩0 = 0 to be the origin. The calcula-

tion requires using ⟨∇2ψ⟩s = 0, ⟨∇2
uψ⟩s = 0, ⟨∂2

vψ⟩s = 0, ⟨v û · ∇ψ⟩s = ⟨vû⟩s,
⟨(v − v0)∂vψ⟩s = 0, and ⟨F · ∇ψ⟩s = ⟨F ⟩s in Eq. (3.5). This gives ⟨r⟩s =
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(⟨vû⟩s + µ⟨F ⟩s + r0) /s. Using Eq. (3.5) we find ⟨vû⟩s = 1
s+γv+(d−1)Dr

[v1û0 + γvv0⟨û⟩s],
⟨û⟩s = û0/(s+ (d− 1)Dr), and use ⟨F ⟩s = F0/s where F0 is the constant external

force vector. This allows us to obtain

⟨r⟩s =
(v1 − v0)û0

s(s+ (d− 1)Dr + γv)
+

v0 û0

s(s+ (d− 1)Dr)
+

µF0

s2
, (3.13)

that leads to

⟨r⟩(t) = (v1 − v0)û0

(d− 1)Dr + γv

(
1− e−((d−1)Dr+γv)t

)
+

v0 û0

(d− 1)Dr

(
1− e−(d−1)Drt

)
+ µF0t.

(3.14)

after performing the inverse Laplace transform. In Fig. 3.3 we show a comparison

of this estimate of displacement in the direction of original heading orientation

⟨r∥⟩ = ⟨r⟩ · û0 as obtained from Eq. (3.14) with numerical simulations.

3.6.1 Position-orientation cross-correlation: ⟨û · r⟩

In this section, we calculate the equal-time cross-correlation ⟨û · r⟩ between the

displacement and heading direction of ABPs, using ψ = û·r and the initial condition

⟨ψ⟩0 = 0 in Eq. (3.5). The calculation uses the relations: ⟨∇2ψ⟩s = 0, ⟨∇2
uψ⟩s =

−(d−1)Dr⟨û·r⟩s, ⟨∂2
vψ⟩s = 0, ⟨v û·∇ψ⟩s = ⟨v⟩s, ⟨(v−v0)∂vψ⟩s = 0, and ⟨F ·∇ψ⟩s =

⟨F · û⟩s. As a result, one gets ⟨û · r⟩s = (⟨v⟩s + µ⟨F · û⟩s) /(s + (d − 1)Dr). To

completely determine the cross-correlation in the Laplace space, we utilize Eq. (3.5)

further to obtain ⟨v⟩s = v1/(s+γv)+γvv0/s(s+γv), ⟨F ·û⟩s = F0 ·û0/(s+(d−1)Dr)

where F0 is assumed to be a constant external force. These results lead to

⟨û · r⟩s =
v1 − v0

(s+ γv)(s+ (d− 1)Dr)
+

v0
s(s+ (d− 1)Dr)

+
µF0 · û0

(s+ (d− 1)Dr)2
. (3.15)
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The inverse Laplace transform of Eq. (3.15) gives

⟨û · r⟩(t) = v1 − v0
(d− 1)Dr − γv

(
e−γvt − e−(d−1)Drt

)
+

v0
(d− 1)Dr

(
1− e−(d−1)Drt

)

+ µF0 · û0 t e−(d−1)Drt. (3.16)

In the absence of external force F = 0, this relation describes the cross-correlation

for ABPs with speed fluctuations. It is interesting to note that for initial active

speed v1 = v0, the cross-correlation reduces to ⟨û · r⟩(t) = v0
(
1− e−(d−1)Drt

)
/(d−

1)Dr, an expression that is the same as ABPs in the absence of active speed fluc-

tuations as described in the previous chapter.

In the presence of constant external force, we plot the cross-correlation as a

function of time in Fig. 3.4, using v1 = v0 that simplifies the relation in Eq. (3.16)

to

⟨û · r⟩(t) = v0
(d− 1)Dr

(
1− e−(d−1)Drt

)
+ µF0 · û0 t e−(d−1)Drt. (3.17)

The plot clearly shows non-monotonic variation with the maximum appearing at

time

tmDr =
1

(d− 1)

(
1 +

v0
µF0 · û0

)
. (3.18)

Clearly, in the absence of external force such maxima and non-monotonic features

disappear. For d = 2, and with the choice µF0 · û0/v̄ = r̂, û0 = x̂, the location of

maxima in Fig. 3.4 are given by tm/τr = 1 + Pe.

3.6.2 Mean squared displacement

Here we present an exact computation of the mean squared displacement ⟨r2⟩ in the

presence of a directed force F0. We use ψ = r2 and the initial condition ⟨r2⟩0 = 0 in

Eq. (3.5). The calculation of the moment uses the relations ⟨∇2
ur2⟩s = 0, ⟨∇2r2⟩s =

2d⟨1⟩s = 2d/s using ⟨1⟩s = 1/s, ⟨v û ·∇r2⟩s = 2⟨v û · r⟩s and ⟨F ·∇r2⟩s = 2⟨F · r⟩s.
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�û
·�
�/
�̄

t/τr

Pe = 1
0.1

0.01

Figure 3.4: (color online) The position-orientation cross-correlation ⟨û · r⟩ as a function
of time t at Dvτr/v̄

2 = 1 and γvτr = 1 in 2d for Pe = 1, 0.1, 0.01. The lines depict
Eq. (3.16) with the initial speed v1 = v0 and heading direction û0 = x̂. In the presence
of external drive µF0/v̄ = r̂, the cross correlation varies non-monotonically to finally
saturate to ⟨û · r⟩/ℓ̄ = Pe in d = 2. The maxima for each Pe value appear at time points
tm/τr = 1 + Pe.

Moreover, ⟨v û ·∇r2⟩s = 2⟨v û · r⟩s and ⟨F ·∇r2⟩s = 2⟨F · r⟩s. Thus Eq. (3.5) leads

to

⟨r2⟩s =
1

s

[
2dD

s
+ 2⟨v û · r⟩s + 2µ⟨F · r⟩s

]
(3.19)

To complete the calculation, one needs to evaluate ⟨v û · r⟩s and ⟨F · r⟩s, again,

using the same Eq. (3.5). One may proceed like before, using ψ = v û ·r and ⟨ψ⟩0 =
0, ⟨∇2ψ⟩s = 0, ⟨∇2

u(v û ·r)⟩s = −(d−1)⟨vû ·r⟩s, ⟨vû ·∇(v û ·r)⟩s = ⟨v2û2⟩s = ⟨v2⟩s,
⟨F ·∇(v û · r)⟩s = ⟨vF · û⟩s to obtain

⟨v û · r⟩s =
1

(s+ (d− 1)Dr + γv)

[
⟨v2⟩s + γvv0⟨û · r⟩s + µ⟨vF · û⟩s

]
.
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Further,

⟨v2⟩s =
1

s+ 2γv

[
v21 + 2Dv⟨1⟩s +

2γvv0
s+ γv

[v1 + γvv0⟨1⟩s]
]
,

⟨û · r⟩s =
v1 − v0

(s+ γv)(s+ (d− 1)Dr)
+

v0
s(s+ (d− 1)Dr)

+
µF0 · û0

(s+ (d− 1)Dr)2
,

⟨vF · û⟩s =
v1(F0 · û0)

(s+ (d− 1)Dr)
.

Similarly, we calculate

⟨F · r⟩s =
1

s

[
⟨vF · û⟩s + µ⟨F 2⟩s

]
,

with ⟨F 2⟩s = F 2
0 /s where F0 is a time-independent external force.

Thus, plugging these relations back in the expression of ⟨r2⟩s in Eq. (3.19), we

obtain

⟨r2⟩s =
2dD

s2
+

2v1µF0 · û0

s2(s+ (d− 1)Dr)
+

4Dv

s2(s+ 2γv)(s+ (d− 1)Dr + γv)

+
2γvv0

s(s+ (d− 1)Dr)(s+ γv)(s+ (d− 1)Dr + γv)

(
v1 +

γvv0
s

)

+
2

s(s+ (d− 1)Dr + γv)(s+ 2γv)

[
v21 +

2γvv0
(s+ γv)

(
v1 +

γvv0
s

)]

+
2µF0 · û0

s(s+ (d− 1)Dr)(s+ (d− 1)Dr + γv)

(
v1 +

γvv0
s+ (d− 1)Dr

)
+

2µ2F 2
0

s3
(3.20)
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Performing the inverse Laplace transform, this leads to

⟨r2⟩ = µ2F 2
0 t

2 − 2v0µF0 · û0te
−(d−1)Drt

(d− 1)Dr

+
(Dv − γv(v0 − v1)

2) e−2γvt

γ2
v((d− 1)Dr − γv)

+
2(2(d− 1)Dr − γv)v0(v0 − v1)e

−γvt

(d− 1)Drγv((d− 1)Dr − γv)

+
2v0 [µF0 · û0(Dr − dDr + γv)

2 − γ2
vv0] e

−(d−1)Drt

(d− 1)2D2
r((d− 1)Dr − γv)γv

+
2v1 [−µF0 · û0(Dr − dDr + γv)

2 + (d− 1)Drγvv0] e
−(d−1)Drt

(d− 1)2D2
r((d− 1)Dr − γv)γv

− 2(d− 1)Drγv [2Dv − γv(v0 − v1)(µF0 · û0 + v0 − v1)] e
−((d−1)Dr+γv)t

(d− 1)Dr((d− 1)Dr − γv)γv((d− 1)Dr + γv)2

− 2(d− 1)3D3
rµF0 · û0(v0 − v1)e

−((d−1)Dr+γv)t

(d− 1)Dr((d− 1)Dr − γv)γv((d− 1)Dr + γv)2

− 2 [(d− 1)2D2
rγv(v0 − v1)v1 + γ3

vv0(−v0 + v1)] e
−((d−1)Dr+γv)t

(d− 1)Dr((d− 1)Dr − γv)γv((d− 1)Dr + γv)2

+
2 [(d− 1)2dDD2

rγv + γ2
v (v

2
0 + µF0 · û0v1)] t

(d− 1)Drγv((d− 1)Dr + γv)

+
2(d− 1)Dr [Dv + γv (dDγv + v20 + µF0 · û0v1)] t

(d− 1)Drγv((d− 1)Dr + γv)

+
2(d− 1)Drγ

3
v(µF0 · û0(v0 − v1) + v0(−3v0 + v1))

(d− 1)2D2
rγ

2
v((d− 1)Dr + γv)2

− 2γ4
v (v

2
0 − µF0 · û0(v0 − v1))

(d− 1)2D2
rγ

2
v((d− 1)Dr + γv)2

− (d− 1)3D3
r(Dv + γv(v0 − v1)(3v0 + v1))

(d− 1)2D2
rγ

2
v((d− 1)Dr + γv)2

− (d− 1)2D2
rγv (3Dv + γv (7v

2
0 − 4v0v1 − v21))

(d− 1)2D2
rγ

2
v((d− 1)Dr + γv)2

(3.21)

Considering the initial active speed v1 = v0, Eq. (3.21) simplifies to

⟨r2⟩ = 2d

(
D +

(v20 + v0µF0 · û0)

(d− 1)dDr

)
t− 2(v20 + v0µF0 · û0)

(d− 1)2D2
r

(
1− e−(d−1)Drt

)

+
2Dv

γv(γv + (d− 1)Dr)

[
t− 1− e−(γv+(d−1)Dr)t

(γv + (d− 1)Dr)
− 1− e−2γvt

2γv
+

e−2γvt − e−(γv+(d−1)Dr)t

((d− 1)Dr − γv)

]

+
2v0µF0 · û0

(d− 1)2D2
r

[(
1− e−(d−1)Drt

)
− (d− 1)Drte

−(d−1)Drt
]
+ µ2F 2

0 t
2 (3.22)

Note that for the special case of (d−1)Dr = γv, Eq. (3.22) can be further simplified

by using the L’Hôpital’s rule, or, directly substituting (d− 1)Dr = γv in Eq. (3.20)
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to calculate ⟨r2⟩.

Persistent motion

In the absence of external force F0 = 0 the second moment of displacement simplifies

to

⟨r2⟩ = 2dDt+
2v20

(d− 1)Dr

(
t− 1− e−(d−1)Drt

(d− 1)Dr

)

+
2Dv

γv(γv + (d− 1)Dr)

(
t− 1− e−(γv+(d−1)Dr)t

γv + (d− 1)Dr

)

− 2Dv

γv(γv + (d− 1)Dr)

[
1− e−2γvt

2γv
− e−2γvt − e−(γv+(d−1)Dr)t

γv − (d− 1)Dr

]
. (3.23)

In the limits of Dv → 0 and γv → ∞, Eq. (3.23) reduces to that of free ABPs in the

absence of speed fluctuations, as shown in the previous chapter [107]. The struc-

ture of the second and third terms in Eq. (3.23) can describe two ballistic diffusive

crossovers [108]. As we show in the following, the presence of the fourth term allows

for further crossovers. Moreover, the presence of translational diffusion makes the

short time dynamics diffusive. Here, it is instructive to note that the calculations of

lower moments can be performed directly using the Langevin equations. For exam-

ple, the formal solution for the position vector, r(t) =
∫ t

0
dt′v(t′)û(t′) +

∫ t

0
dBt(t′)

in the absence of external force leads to the second moment

⟨r2⟩ =
∫ t

0

dt1

∫ t

0

dt2 ⟨v(t1)v(t2)⟩ ⟨û(t1) · û(t2)⟩ +

∫ t

0

∫ t

0

⟨dBt(t1) · dBt(t2)⟩,

(3.24)

where the cross terms are zero as they describe independent stochastic processes

with ⟨dBt⟩ = 0. By substituting the speed correlation function from Eq. (3.10)

and the orientational correlation function from Eq. (3.9) in Eq. (3.24), and per-

forming the integrations, one gets the same mean squared displacement relation as

in Eq. (3.23).

In Fig.3.5 we compare our analytic prediction for the second moment of displace-
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ment in Eq. (3.23) with direct numerical simulation results in 2d (d = 2) to show

excellent agreement between them. Here, it is instructive to note the difference of

our d-dimensional expression for ⟨r2⟩ shown in Eq. (3.23) from earlier results for 2d

obtained in Ref. [15, 108]. The difference stems from an assumption of time-scale

separation used in these earlier publications, where the speed fluctuations were as-

sumed to be in steady state. This can be easily seen by noting that instead of using

the general result for ⟨v(t1)v(t2)⟩ of Eq. (3.10), if one uses the steady state limit of

the correlation for active speed as in Eq. (3.11), the expression in Eq. (3.24) lead to

the previously obtained relation for the second moment of displacement [15, 108]

⟨r2⟩ = 4D t+ 2v20

(
t

Dr

− 1− e−Drt

D2
r

)
+

2Dv

γv

(
t

(γv +Dr)
− 1− e−(γv+Dr)t

(γv +Dr)2

)
.

(3.25)

As is clearly shown in Fig.3.5, while our calculation in Eq. (3.23) exactly captures

the behavior observed in numerical simulations, the earlier result shown in Eq. (3.25)

cannot capture the qualitative behavior of ⟨r2⟩(t), e.g., at small γv/Dr and large

Pe. Fig.3.5 shows multiple ballistic diffusive crossovers, which we consider in detail

in the following.

Multiple crossovers and crossover timescales: To elucidate the crossovers

permitted by Eq. (3.23), we focus on its behavior in different time regimes. First

we note that in the two limits of the shortest and longest times ⟨r2⟩ shows diffusive

behavior, albeit with two significantly different diffusion constants. In the short

time limit

⟨r2⟩ ≈ 2dD t (3.26)

and in the long time limit

⟨r2⟩ ≈ 2d

[
D +

v20
d(d− 1)Dr

+
Dv

dγv[γv + (d− 1)Dr]

]
t. (3.27)
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Figure 3.5: (color online) Time dependence of ⟨r2⟩/t in 2d, in the absence of external
force. The slow and fast relaxations of active speed are considered in (a, b) γvτr ≪ 1,
and (c, d) γvτr ≫ 1, respectively. The points denote simulation results, the solid lines
depict Eq. (3.23) with d = 2, and the dashed lines depict Eq. (3.25). Parameter values
used in (a, b): γvτr = 5× 10−4, Dvτr/v̄

2 = 2.5 with Pe ≡ v0/v̄ = 22.36 (a) and 1.12 (b).
Parameter values used in (c, d): γvτr = 5× 102, Dvτr/v̄

2 = 107 with Pe ≡ v0/v̄ = 20 (c)
and 1 (d). Initial conditions are chosen such as the active speed speed v1/v̄ = Pe and the
heading direction û0 = x̂ is along the x-axis.

For the smallest time scales, we expand ⟨r2⟩ in Eq. (3.23) around t = 0 to obtain

⟨r2⟩ = 2dDt+ v20t
2 − 1

3

(
(d− 1)Drv

2
0 − 2Dv

)
t3 +O(t4). (3.28)

This shows a crossover from diffusive ⟨r2⟩ ∼ t to ballistic behavior ⟨r2⟩ ∼ t2 at

tI = 2dD/v20, with the crossover point obtained by comparing the first and second

terms of the above expansion. Such crossovers have been observed in Fig. 3.5. Com-

paring the second and third terms in the above expansion, one can identify a possible

second crossover from ballistic to diffusive behavior at tII = 3v20/[(d−1)Drv
2
0−2Dv],

provided (d − 1)Drv
2
0 > 2Dv. Further insights can be drawn by separately consid-

ering the limits of (i) slow speed relaxation and (ii) slow orientational relaxation

separately.
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(i) Slow relaxation of active speed; γv ≪ (d− 1)Dr : Using (d− 1)Drt ≫ 1

and 2γvt ≪ 1, we can write exp[−(d− 1)Drt] ≈ 0, exp[−((d− 1)Dr + γv)t] ≈ 0

and expand exp(−2γvt) around 2γvt = 0 in Eq. (3.23) to get

⟨r2⟩ =
(
2dD +

2v20
(d− 1)Dr

+
4Dv

(d− 1)2D2
r − γ2

v

)
t+

2Dv

(d− 1)Dr − γv
t2 +O(t3).

(3.29)

a third crossover ⟨r2⟩ ∼ t to ∼ t2 expect at tIII ∼ [2dD+2v20/(d−1)Dr+4Dv/((d−
1)2D2

r−γ2
v)] [(d−1)Dr−γv]/2Dv with condition (d−1)Dr ≫ 2γv. The final crossover

point to the long-time diffusive limit denoted by Eq. (3.27) can be calculated by

comparing the last term in Eq. (3.29) with Eq. (3.27). This crossover time turns out

to be tIV ∼ [2dD+2v20/(d− 1)Dr +2Dv/γv((d− 1)Dr + γv)] [(d− 1)Dr − γv)]/2Dv.

Moreover, at small Pe, the diffusive-ballistic crossover at tI can be preempted by

a different ballistic-diffusive crossover at t∗I that can be determined by comparing

the first term in Eq. (3.28) with the second term in Eq. (3.29). This gives t∗I =

dD[(d− 1)Dr − γv]/Dv, a crossover point independent of active speed v0.

Such crossovers for ⟨r2⟩ in 2d in the limit of γvτr ≪ 1 are illustrated in Fig. 3.6.(a).

The graphs depict the expression in Eq. (3.23) using parameter values γ̃v = γvτr =

5 × 10−4, D̃v = Dvτr/v̄
2 = 2.5. The solid line at larger Pe (= 22.36) shows

all four diffusive- ballistic- diffusive crossovers discussed above, as the require-

ment tI < tII < tIII < tIV is satisfied. In this case, the crossover times are

tI ≡ tI/τr ∼ 4/Pe2 ≈ 0.008, tII ≡ tII/τr = 3Pe2/(Pe2 − 2D̃v) ≈ 3.03, tIII ≡
tIII/τr = [4 + 2Pe2 + 4D̃v/(1 − γ̃v

2)](1 − γ̃v)/2D̃v ≈ 202.8, and tIV ≡ tIV /τr =

[4+ 2Pe2 +2D̃v/{γ̃v(1+ γ̃v)}] (1− γ̃v)/2D̃v ≈ 2200, as pointed out in Fig. (3.6)(a).

For Pe = v0/v̄ = 1.12, ⟨r2⟩ denoted by the dashed line in Fig. 3.6.(a) shows only

two crossovers: (a) a diffusive-ballistic crossover at t∗I ≡ t∗I/τr = 2(1 − γ̃v)/D̃v =

0.8 and (b) a ballistic-diffusive crossover at tIV ≡ tIV /τr ≈ 2000. In this case

t∗I < tI = 3.2, thus the first diffusive-ballistic crossover is preempted by t∗I . Other

possible intermediate crossovers disappear due to the following reasons. The pos-

sible ballistic-diffusive crossover point tII < 0 for these parameters. In its absence,
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Figure 3.6: (color online) Persistent motion. Mean squared displacement ⟨r2⟩ as in
Eq. (3.23) as a function of time t in two dimension, d = 2. (a) Parameters used are
γ̃v = γvτr = 5 × 10−4, D̃v = Dvτr/v̄

2 = 2.5 with Pe = v0/v̄ = 22.36 (solid line),
1.12 (dashed line). The solid line shows four crossover with crossover times tI/τr =
0.008, tII/τr = 3.03, tIII/τr = 202.8 and tIV /τr = 2200. The dashed line shows two
crossovers: : a diffusive-ballistic crossover at t∗I/τr = 0.8 and a ballistic-diffusive crossover
at tIV /τr = 2000. (b) Parameters used are γ̃v = γvτr = 2 × 103, D̃v = Dvτr/v̄

2 = 1011,
with Pe = v0/v̄ = 2 × 103 (solid line), 10 (dashed line). The solid line shows five
crossover with crossover times tI/τr = 10−6, tII/τr = 6× 10−5, t′III/τr = 8.6× 10−4 and
t′IV /τr = 1.25×10−2, and tV = 2.02. The dashed line shows two crossovers with crossover
times t∗II/τr = 7.75 × 10−6 and t′III/τr = 8.6 × 10−4. Initial activity: speed v1/v̄ = Pe
and orientation along x-axis, û0 = x̂.

tIII ≈ 3.3 signifying a possible diffusive-ballistic crossover cannot show any change

in the already ballistic property of the ABP in that time regime.

(ii) Fast relaxation of active speed; γv ≫ (d− 1)Dr: The scenario of short-

time diffusive-ballistic crossover at tI = 2dD/v20 remains unchanged. As indicated

before, at tII = 3v20/((d−1)Drv
2
0 −2Dv) with 2Dv > (d−1)Drv

2
0, a possible second

crossover from ⟨r2⟩ ∼ t2 to ⟨r2⟩ ∼ t3 can appear. In the limit of (d−1)Drt ≪ 1 and

2γvt ≫ 1, we can use exp(−2γvt) ≈ 0, exp[−((d− 1)Dr + γv)t] ≈ 0 and expand

exp[−(d− 1)Drt] around Drt = 0 in Eq. (3.23) to get

⟨r2⟩ =
(
2dD +

2Dv

γv((d− 1)Dr + γv)

)
t+ v20t

2 +O(t3). (3.30)
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Comparing the third term in Eq. (3.28) and the first term in Eq. (3.30), we esti-

mate the crossover time from ⟨r2⟩ ∼ t3 to ⟨r2⟩ ∼ t to be at t′III =
[
32dD+2Dv/{γv((d−1)Dr+γv)}

2Dv−(d−1)Drv20

]1/2
.

A fourth crossover ⟨r2⟩ ∼ t to ⟨r2⟩ ∼ t2 is expected at t′IV = (2dD + 2Dv/(γv((d−
1)Dr+γv))/v

2
0. The final ballistic-diffusive crossover in this limit of (d−1)Dr ≪ 2γv

can be obtained by comparing the second term in Eq. (3.30) with Eq. (3.27). This

gives the final crossover time tV = (2dD+2v20/(d−1)Dr+2Dv/γv((d−1)Dr+γv))/v
2
0.

There is also a possibility of getting a direct crossover from ⟨r2⟩ ∼ t to ⟨r2⟩ ∼
t3 at t∗II = [6dD/(2Dv − (d− 1)Drv

2
0)]

1/2 if t∗II < tI . The crossover point t∗II is

obtained by comparing the first and the third term of Eq. (3.28). A direct final

crossover from ⟨r2⟩ ∼ t3 to ⟨r2⟩ ∼ t can appear at tV I = {6d[D +
v20

d(d−1)Dr
+

Dv

dγv [γv+(d−1)Dr]
]/[2Dv − (d − 1)Drv

2
0]}1/2 if tV I < t′III , otherwise the final crossover

will be at t′III . The estimate of tV I is obtained by comparing the third term in

Eq. (3.28) with Eq. (3.27).

Such crossovers for ⟨r2⟩ in 2d in the limit of γvτr ≫ 1 are illustrated in Fig. 3.6.(b).

The graphs depict the expression in Eq. (3.23) using parameter values γ̃v = γvτr =

2 × 103, D̃v = Dvτr/v̄
2 = 1011. The solid line at Pe = v0/v̄ = 2 × 103 exhibit all

possible five crossovers ⟨r2⟩ ∼ t to ∼ t2, to ∼ t3, to ∼ t, to ∼ t2 to finally ∼ t as

the requirement tI < tII < t′III < t′IV < tV is satisfied. The crossover times are

tI ≡ tI/τr ∼ 4/Pe2 = 1 × 10−6, tII ≡ tII/τr ∼ 3Pe2/(Pe2 − 2D̃v
2
) ≈ 6 × 10−5,

t′III ≡ t′III/τr =
[
3
(
4 + 2D̃v/{γ̃v(1 + γ̃v)}

)
/(2D̃v − Pe2)

]1/2
≈ 8.6 × 10−4, t′IV ≡

t′IV /τr = [4 + 2D̃v/{γ̃v(1 + γ̃v)}]/Pe2 ≈ 1 × 10−2, tV ≡ tV /τr = [4 + 2Pe2 +

2D̃v/{γ̃v(1 + γ̃v)}]/Pe2 ≈ 2. They are identified by arrows on the solid line in

Fig. (3.6)(b).

For Pe = v0/v̄ = 10, ⟨r2⟩ denoted by the dashed line in Fig. (3.6)(b)) shows only

two crossovers: the first from ⟨r2⟩ ∼ t to ⟨r2⟩ ∼ t3 at t∗II , and the second going back

to ⟨r2⟩ ∼ t at tV I . Here, t∗II ≡ t∗II/τr = [12/(2D̃v − Pe2) ]1/2 ≈ 7.75× 10−6 as t∗II <

tI ≈ 0.04. Because of the large value of D̃v chosen, the ⟨r2⟩ ∼ t3 to ⟨r2⟩ ∼ t crossover

appears at t′III ≡ t′III/τr ≈ 8.6 × 10−4, as tV I/τr =

[
12× 1+Pe2

2
+ D̃v

γ̃v(1+γ̃v)

2D̃v−Pe2

]1/2
=

10−3 > t′III .
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We present a brief summary of the dominance of different kinds of fluctuations

in different time regimes in Table-3.1.

Table 3.1: ⟨r2⟩ scaling: characterizing dominance of fluctuation in diffrent regime

t −→

⟨r2⟩ ∼ t ∼ t2 ∼ t ∼ t2 ∼ t
thermal + thermal +

(d− 1)Dr ≫ γv thermal orientation orientation speed orientation +
speed

thermal + thermal +
(d− 1)Dr ≪ γv thermal speed speed orientation speed +

orientation

Directed persistent motion

The mean squared displacements in the presence of constant external force force,

can be directly analyzed using the Eq. (3.22). For two dimensions, setting d = 2 in

Eq. (3.22) with initial condition v1 = v0 and rearranging terms, we get

⟨r2⟩ = 4D t+ 2v20

(
t

Dr

− 1− e−Drt

D2
r

)
+

2Dv

γv

(
t

(γv +Dr)
− 1− e−(γv+Dr)t

(γv +Dr)2

)

− 2Dv

γv(γv +Dr)

[
1− e−2γvt

2γv
+

e−2γvt − e−(γv+Dr)t

(γv −Dr)

]
+

2v0µF0 · û0

Dr

(
1− e−Drt

)
t

+ µ2F 2
0 t

2 (3.31)

with the components of external force denoted by F0 = (F x
0 , F

y
0 ). As has been

indicated before, the second moment ⟨r2⟩ can also be calculated directly from the

solution of Langevin equations,

r(t) =
∫ t

0

dt′v(t′)û(t′) +

∫ t

0

dBt(t′) + µ

∫ t

0

dt′F (t′).
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Thus the mean squared displacement is given by

⟨r2⟩ = 2

∫ t

0

dt1

∫ t1

0

dt2 [⟨v(t1)v(t2)⟩⟨û(t1) · û(t2)⟩] + 2

∫ t

0

∫ t1

0

⟨dBt(t1)dB
t(t2)⟩

+ 2µ

∫ t

0

dt1

∫ t1

0

dt2 [⟨v(t2)⟩⟨F (t1) · û(t2)⟩+ ⟨v(t1)⟩⟨F (t2) · û(t1)⟩]

+ 2µ2

∫ t

0

dt1

∫ t1

0

dt2⟨F (t1) · F (t2)⟩, (3.32)

where cross terms are zero as ⟨dBt⟩ = 0 and speed v(t), orientation û(t) evolve

independently. By substituting the speed correlation function from Eq. (3.10) and

orientational correlation from Eq. (3.9) in Eq. (3.32), and after performing the

integrations, one gets the same mean squared displacement as in Eq. (3.31).

Multiple crossovers and crossover time scales: In order to show the differ-

ent regimes that Eq. (3.22) permits, we analyze the expression for ⟨r2⟩ in different

time regimes. In the limit of smallest time t → 0, expanding all the exponential

functions around t = 0 in Eq. (3.22), we get

⟨r2⟩ = 2dDt+
(
v20 + 2v0µF0 · û0 + µ2F 2

0

)
t2

− 1

3

(
(d− 1)Drv

2
0 − 2Dv + 3(d− 1)Drv0µF0 · û0

)
t3 +O(t4). (3.33)

This shows that the initial ⟨r2⟩ ∼ t behavior crosses over to the ballistic ⟨r2⟩ ∼ t2

regime at tI = 2dD/(v20 +2v0µF0 · û0+µ2F0 ·F0). A second possible crossover from

⟨r2⟩ ∼ t2 to ⟨r2⟩ ∼ t may appear at tII = 3(v20 + 2v0µF0 · û0 + µ2F0 · F0)/((d −
1)Drv

2
0 − 2Dv +3(d− 1)Drv0µF0 · û0). At large Dv the sign of the denominator can

change, where |tII | will denote a crossover from ⟨r2⟩ ∼ t2 to ⟨r2⟩ ∼ t3.

In the other limit of longest times ( t → ∞ ), all the exponentials drop out of

the Eq. (3.22) to give

⟨r2⟩ =
[
2dD +

2(v20 + v0µF0 · û0)

(d− 1)Dr

+
2Dv

γv((d− 1)Dr + γv)

]
t+ µ2F 2

0 t
2. (3.34)
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(i) Slow relaxation of active speed; γv ≪ (d − 1)Dr : In the limit of (d −
1)Drt ≫ 1 and 2γvt ≪ 1, we use exp[−(d−1)Drt] = 0, exp[−((d− 1)Dr + γv)t] = 0

and expand exp(−2γvt) around 2γvt = 0 in Eq. (3.23), to get

⟨r2⟩ =
(
2dD +

2(v20 + v0µF0 · û0)

(d− 1)Dr

+
4Dv

((d− 1)2D2
r − γ2

v)

)
t

+
2Dv

((d− 1)Dr − γv)
t2 +O(t3). (3.35)

This shows the possibility of a third crossover ⟨r2⟩ ∼ t to ⟨r2⟩ ∼ t2 at tIII ∼
(2dD+2(v20 + v0µF0 · û0)/(d− 1)Dr +4Dv/((d− 1)2D2

r −γ2
v))((d− 1)Dr −γv)/2Dv.

In the longest times, we compare the quadratic in t term in Eq. (3.35) with the

linear t term in Eq. (3.34) to get a fourth ballistic-diffusive crossover at tIV ∼
[2dD+2(v20+v0µF0 · û0)/(d−1)Dr+2Dv/(γv((d−1)Dr+γv))]((d−1)Dr−γv)/2Dv

with the condition (d−1)Dr ≫ 2γv. The final diffusive-ballistic crossover can appear

at tV ∼ [2dD+ 2v20/(d− 1)Dr + 2Dv/γv((d− 1)Dr + γv)]/µ
2F 2

0 , with the crossover

point obtained by comparing the linear and quadratic in t terms in Eq. (3.34).

In the case of tII < tI , the first diffusive-ballistic crossover disappears, as a result

removing the following ballistic-diffusive crossover. Thus it reduces the number of

possible crossovers to three: ⟨r2⟩ ∼ t to ∼ t2 to ∼ t and then back to t2 for longest

times. The new first crossover then can appear at t∗I = 2dD((d− 1)Dr − γv)/2Dv,

calculated from comparing the linear in t term in Eq. (3.33) with the quadratic

in t term in Eq. (3.35). The crossovers at tI , tII , tIII disappear. The rest of the

crossovers at tIV and tV remain unaltered. Thus in this case, the second possible

crossover from ⟨r2⟩ ∼ t2 to ∼ t can appear at tIV and the final diffusive-ballistic

crossover appears at tV .

The different crossovers for ⟨r2⟩ in 2d with crossover times identified is shown

in Fig. (3.7)(a). The initial conditions are v1 = v0 and initial heading direction

û0 along the x-axis. The parameter values used are γ̃v = γvτr = 5 × 10−4, D̃v =

Dvτr/v̄
2 = 2.5, and F̃0 = µF0/v̄ = 2.2× 10−2 r̂.

The solid line corresponding to Pe = v0/v̄ = 22.36 in Fig. (3.7)(a) exhibits
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Figure 3.7: (color online) Directed persistent motion. Mean squared displacements ⟨r2⟩
as in Eq. (3.31) are depicted as a function of time t for directed persistent motion with
speed fluctuation in 2d. The initial condition is set by speed v1/v̄ = Pe and heading
direction û0 = x̂. (a) Parameters used are γ̃v = γvτr = 5 × 10−4, D̃v = Dvτr/v̄

2 = 2.5,
and F̃0 = µF0/v̄ = 2.2 × 10−2 r̂ with r̂ = x̂ + ŷ, active speed Pe = v0/v̄ = 22.36 (solid
line) and 1.12 (dashed line). The solid line exhibits five crossovers with crossover times
tI/τr = 8×10−3, tII/τr = 3.03, tIII/τr = 202.9 and tIV /τr = 2199, and tV /τr = 1.1×107.
The dashed line shows three crossovers with crossover times t∗I/τr = 0.8, tIV /τr = 2×103,
tV /τr = 107. (b) Parameters used are γ̃v = γvτr = 2 × 103, D̃v = Dvτr/v̄

2 = 1011, and
F̃0 = µF0/v̄ = 102 r̂, active speed Pe = v0/v̄ = 2× 103 (solid line) and 10 (dashed line).
The solid line exhibits six crossover with crossover times tI/τr = 10−6, tII/τr = 6× 10−5,
tIII/τr = 0.0016 and tIV /τr = 0.0225, tV /τr = 2.02, and tV I/τr = 4 × 102. The dashed
line shows three crossovers with crossover times t∗II/τr = 7.7× 10−6, t′III/τr = 9× 10−4,
tV /τr = 2.5.

all the possible crossovers discussed above, from ⟨r2⟩ ∼ t to ∼ t2 to ∼ t to ∼ t2

to ∼ t to finally ∼ t2 as the requirement tI < tII < tIII < tIV < tV is satisfied.

In this case, tI ≡ tI/τr = 4/(Pe2 + 2PeF̃0 · û0 + F̃ 2
0 ) ≈ 0.008, tII ≡ tII/τr =

3(Pe2 + 2PeF̃0 · û0 + F̃ 2
0 )/(Pe2 − 2D̃v + 3PeF̃0 · û0) ≈ 3.03, tIII ≡ tIII/τr ∼

[4 + 2(Pe2 + PeF̃0 · û0) + 4D̃v/(1 − γ̃v
2)](1 − γ̃v)/2D̃v ≈ 202.9, tIV ≡ tIV /τr ∼

[4+ 2(Pe2+PeF̃0 · û0)+ 2D̃v/{γ̃v(1+ γ̃v)}](1− γ̃v)/2D̃v ≈ 2199, and tV ≡ tV /τr ∼
[4 + 2Pe2 + 2D̃v/{γ̃v(1 + γ̃v)}]/F̃ 2

0 ≈ 1.1× 107 pointed out in Fig. (3.7)(a).

The dashed line in Fig. (3.7)(a) corresponds to Pe = v0/v̄ = 1.12 and shows

two diffusive-ballistic crossovers with one intermediate ballistic-diffusive crossover.

The crossover times are t∗I ≡ t∗I/τr ∼ 4(1 − γ̃v)/2D̃v ≈ 0.8, tIV ≡ tIV /τr ∼ [4 +
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2(Pe2 + PeF̃0 · û0) + 2D̃v/{γ̃v(1 + γ̃v)}](1− γ̃v)/2D̃v ≈ 2× 103, and tV ≡ tV /τr ∼
[4 + 2Pe2 + 2D̃v/{γ̃v(1 + γ̃v)}]/F̃ 2

0 ≈ 1 × 107. In this case t∗I < tI ≈ 3.2, thus the

first diffusive-ballistic crossover is preempted by t∗I . Other possible intermediate

crossovers disappear due to the following reasons. The possible ballistic-diffusive

crossover point tII < 0 for these parameters. In its absence, tIII ≈ 3.3 signifying a

possible diffusive-ballistic crossover cannot show any change in the already ballistic

property of the ABP in that time regime.

(ii) Fast relaxation of active speed; γv ≫ (d − 1)Dr : In this case, again,

the first two crossovers from diffusive to ballistic to diffusive regime appears at tI

and tII , respectively. The following crossovers change due to the consideration of

the fast relaxation of active speed. As (d − 1)Drt ≪ 1 and 2γvt ≫ 1, we use

exp(−2γvt) = 0, exp[−((d− 1)Dr + γv)t] = 0 and expand exp[−(d− 1)Drt] around

Drt = 0 in Eq. (3.22) to get

⟨r2⟩ =
(
2dD +

2Dv

γv((d− 1)Dr + γv)

)
t+ (v20 + 2v0µF0 · û0 + µ2F 2

0 )t
2

+O(t3). (3.36)

Moreover, at large Dv the sign of the denominator in the expression of tII can

change. In that case, |tII | denotes a crossover from ⟨r2⟩ ∼ t2 to ⟨r2⟩ ∼ t3.

Comparing the cubic term in t in Eq (3.33) with the linear in t term in Eq. (3.36),

we get the crossover from ⟨r2⟩ ∼ t3 to ∼ t at

t′III =
[
3 (2dD + 2Dv/γv((d− 1)Dr + γv)) /(2Dv − (d− 1)Drv

2
0 − 3(d− 1)Drv0µF0 · û0)

]1/2
.

A fourth crossover ⟨r2⟩ ∼ t to ∼ t2 is expected at t′IV ∼ (2dD+2Dv/(γv((d−1)Dr+

γv))/(v
2
0 + 2v0µF0 · û0 + µ2F 2

0 ). This is obtained by comparing the first two terms

in Eq. (3.36). The fifth crossover point t′V = (2dD + 2v20/(d− 1)Dr + 2Dv/γv((d−
1)Dr+γv))/(v

2
0+2v0µF0 · û0+µ2F 2

0 ) from ballistic to diffusive behavior is obtained

by comparing the ballistic term in Eq. (3.36) with the diffusive term in Eq. (3.34).

The final diffusive-ballistic crossover point tV = [2dD+2v20/(d−1)Dr+2Dv/γv((d−
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1)Dr+γv)]/µ
2F 2

0 remains unchanged, as it is obtained by comparing the linear and

quadratic in t terms in Eq. (3.34), as before.

With changing parameter values, if the sequence of time scales from small to

large changes, the number of crossovers get altered. For example, if tII < tI the

first ballistic-diffusive crossover disappears and, as a result, so does the following

ballistic-diffusive crossover. The first crossover under such a condition is from ⟨r2⟩ ∼
t to ⟨r2⟩ ∼ t3 and can appear at t∗II ∼ [6dD/(2Dv − (d− 1)Drv

2
0 − 3(d− 1)Drv0µF0 · û0)]

1/2.

This point is calculated by comparing the linear and the cubic order terms in t in

Eq. (3.33). The following crossovers may appear at t′III , t′IV , t′V , and tV . However, if

t′IV < t′III , this sequence of crossovers also get modified, losing two more crossovers.

In that case, the next crossover can appear at

t∗V =




3
[
2dD +

2(v20+v0µF0·û0)

(d−1)Dr
+ 2Dv

γv((d−1)Dr+γv)

]

[(d− 1)Drv20 − 2Dv + 3(d− 1)Drv0µF0 · û0]




1/2

obtained by comparing the t3-order term in Eq. (3.33) with the linear order term

in t in Eq. (3.34). The final diffusive-ballistic crossover will remain at tV , as before.

The different crossovers for ⟨r2⟩ in 2d with crossover times identified is shown

in Fig. (3.7)(b). The initial conditions are v1 = v0 and initial heading direction

û0 along the x-axis. The parameter values used are γ̃v = γvτr = 2 × 103, D̃v =

Dvτr/v̄
2 = 1011, and F̃0 = µF0/v̄ = 102 r̂.

The solid line, Pe = v0/v̄ = 2 × 103 in Fig. (3.7)(b) exhibit all possible six

crossovers ⟨r2⟩ ∼ t to ∼ t2, to ∼ t3, to ∼ t, to ∼ t2, to ∼ t to finally ∼ t2

as the requirement tI < tII < tIII < tIV < tV < tV I satisfied. In this case,

the crossover times are tI ≡ tI/τr ∼ 4/(Pe2 + 2PeF̃0 · û0 + F̃ 2
0 ) ≈ 9 × 10−7,

tII ≡ tII/τr ∼ 3(Pe2 + 2PeF̃0 · û0 + F̃ 2
0 )/(Pe2 − 2D̃v) ≈ 7× 10−5, t′III ≡ t′III/τr ∼[

3
(
4 + 2D̃v/γ̃v(1 + γ̃v)

)
/(2D̃v − Pe2 − 3PeF̃0 · û0)

]1/2
≈ 9×10−4, t′IV ≡ t′IV /τr ∼

(4+2D̃v/γ̃v(1+ γ̃v))/(Pe2+2PeF̃0 · û0+ F̃ 2
0 ) ≈ 1×10−2, t′V ≡ t′V /τr ∼ [4+2Pe2+

2D̃v/{γ̃v(1 + γ̃v)}]/(Pe2 + 2PeF̃0 · û0 + F̃ 2
0 ) ≈ 2, and tV ≡ tV /τr ∼ [4 + 2Pe2 +
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2D̃v/{γ̃v(1 + γ̃v)}]/F̃ 2
0 ≈ 4× 102 pointed out in Fig. (3.7)(b).

The dashed line, Pe = v0/v̄ = 10 in Fig. (3.7)(b) shows three crossovers from

⟨r2⟩ ∼ t to ⟨r2⟩ ∼ t3 to ⟨r2⟩ ∼ t to finally ⟨r2⟩ ∼ t2. The crossover times are

t∗II/τr ∼ (12/(2D̃v − Pe2 − 3PeF̃0 · û0))
1/2 ≈ 7.7× 10−6,

t′III/τr ∼
[
3
(
4 + 2D̃v/{γ̃v(1 + γ̃v)}

)
/(2D̃v − Pe2 − 3PeF̃0 · û0)

]1/2
≈ 9×10−4,

and tV ≡ tV /τr ∼ (4 + 2D̃v/{γ̃v(1 + γ̃v)})/F̃ 2
0 ≈ 2.5. The first crossover between

⟨r2⟩ ∼ t and ∼ t3 appears at t∗II , as t∗II < tI ≈ 3.3 × 10−4 preempting the possible

crossover at tI . The second crossover ⟨r2⟩ ∼ t3 to ∼ t appears at t′III with t′III <

t′IV ≈ 4.1. The other possible crossovers ⟨r2⟩ ∼ t to ∼ t2 to ∼ t are absent as

t′V ≈ t′IV . The final crossover ⟨r2⟩ ∼ t to ∼ t2 appears at tV as before.

3.6.3 Displacement fluctuation

In this section, we compute displacement fluctuation ⟨δr2⟩ and analyze the multiple

crossovers with crossover timescales.

Persistent motion

Displacement fluctuation defined as ⟨δr2⟩ = ⟨r2⟩ − ⟨r⟩2 where ⟨r2⟩, Eq. (3.23) and

⟨r⟩, Eq. (3.14) already calculated. Thus, ⟨δr2⟩

⟨δr2⟩ = 2d

(
D +

v20
(d− 1)dDr

)
t− v20

(d− 1)2D2
r

(
3− 4 e−(d−1)Drt + e−2(d−1)Drt

)

+
2Dv

γv(γv + (d− 1)Dr)

[
t− 1− e−(γv+(d−1)Dr)t

(γv + (d− 1)Dr)
− 1− e−2γvt

2γv
+

e−2γvt − e−(γv+(d−1)Dr)t

((d− 1)Dr − γv)

]

(3.37)

Setting d = 2, we get

⟨δr2⟩ = 4

(
D +

v20
2Dr

)
t− v20

D2
r

(
3− 4 e−Drt + e−2Drt

)

+
2Dv

γv(γv +Dr)

[
t− 1− e−(γv+Dr)t

(γv +Dr)
− 1− e−2γvt

2γv
+

e−2γvt − e−(γv+Dr)t

(Dr − γv)

]
(3.38)
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Figure 3.8: (color online) Displacement fluctuations ⟨δr2⟩ in Eq. (3.38) as a function
of time t in d = 2. (a) Parameters used are γ̃v = γvτr = 5 × 10−4, γ̃v = Dvτr/v̄

2 = 2.5
with active speed Pe = v0/v̄ = 22.36 (solid line), 1.12 (dashed line). The solid line shows
four crossovers with crossover times tI/τr = 0.008, tII/τr = 3.03, tIII/τr = 202.8 and
tIV /τr = 2.2×103. The dashed line shows two crossovers with crossover times t∗I/τr = 0.8
and tIV /τr = 2×103. (b) Parameters used are γ̃v = γvτr = 2×103, D̃v = Dvτr/v̄

2 = 1011

with Pe = v0/v̄ = 2 × 103 (solid line), 10 (dashed line). The solid line exhibits four
crossovers with crossover times tI/τr = 8×10−6, tII/τr = 7×10−4, t′III/τr = 1.4×10−1 and
t′IV /τr = 1.7. The dashed line shows two crossovers with crossover times tI/τr = 8×10−6,
tII/τr = 7× 10−4.

From which we can redefine
√
⟨δr2⟩ spread of displacement of different independent

configurations starting from same initial condition(r, v, û) at time t. In the small

time limit of t → 0 (i.e., Drt ≪ 1, γvt ≪ 1), expanding ⟨δr2⟩ in Eq. (3.37) around

t = 0 leads to,

⟨δr2⟩ = 2dDt+
2

3
(Dv + (d− 1)Drv

2
0)t

3 − 1

6
((d− 1)DrDv + 3Dvγv

+ 3(d− 1)2D2
rv

2
0)t

4 +O(t5). (3.39)

This allows a crossover from ⟨δr2⟩ ∼ t to ∼ t3 at tI =
√
3dD/(Dv + (d− 1)Drv20).

Moreover, a second possible crossover ⟨δr2⟩ ∼ t3 to ∼ t may appear at tII =

4(Dv +(d−1)Drv
2
0)/((d−1)DrDv +3Dvγv +3v20(d−1)2D2

r). In the long time limit
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of t → ∞ (i.e., Drt ≫ 1, γvt ≫ 1), ⟨δr2⟩ in Eq. (3.37) leads to

⟨δr2⟩ =
(
2dD +

2v20
(d− 1)Dr

+
2Dv

γv(γv + (d− 1)Dr)

)
t, (3.40)

which gives a diffusive scaling ⟨δr2⟩ = 2dDefft with the effective diffusion constant

in d-dimensions,

Deff =

(
D +

v20
(d− 1)dDr

)
+

Dv

dγv((d− 1)Dr + γv)
.

(i) Slow relaxation of active speed; γv ≪ (d−1)Dr : In the limit of (d−1)Drt ≫
1 and 2γvt ≪ 1, ⟨δr2⟩ in Eq. (3.37) leads to

⟨δr2⟩ =
(
2dD +

2v20
(d− 1)Dr

+
4Dv

((d− 1)2D2
r − γ2

v)

)
t+

2Dv

((d− 1)Dr − γv)
t2 +O(t3).

(3.41)

This allows a third crossover from ⟨δr2⟩ ∼ t to ⟨δr2⟩ ∼ t2 at tIII ∼ (2dD+2v20/(d−
1)Dr + 4Dv/((d − 1)2D2

r − γ2
v))((d − 1)Dr − γv)/2Dv. Finally, a crossover from

⟨δr2⟩ ∼ t2 to ∼ t may appear at tIV ∼ [2dD + 2v20/(d− 1)Dr + 2Dv/{γv(γv + (d−
1)Dr)}]((d− 1)Dr − γv)/2Dv.

In the case of tII < tI , the number of possible crossovers reduces to two: from

⟨δr2⟩ ∼ t to ∼ t2 to ∼ t. Following a procedure similar to the analysis of crossovers

in ⟨r2⟩, we find that the first crossover from ⟨δr2⟩ ∼ t to ∼ t2 appears at t∗I ∼
2dD((d − 1)Dr − γv)/2Dv, obtained by comparing Eq. (3.39) and Eq. (3.41). The

second crossover ⟨δr2⟩ ∼ t2 to ∼ t appears at tIV ∼ [2dD + 2v20/(d − 1)Dr +

2Dv/{γv(γv + (d− 1)Dr)}]((d− 1)Dr − γv)/2Dv, obtained by comparing Eq. (3.41)

and Eq. (3.40).

The possible crossovers of ⟨δr2⟩ in 2d in the limit of γvτr ≪ 1 identifying the

crossover times are shown in Fig. (3.8)(a). Parameter values are γ̃v = γvτr =

5 × 10−4, D̃v = Dvτr/v̄
2 = 2.5. The solid line, Pe = v0/v̄ = 22.36 in Fig. (3.8)(a)

exhibits all the four crossovers ⟨δr2⟩ ∼ t to ∼ t3, to ∼ t, to ∼ t2, to finally ∼ t

as the requirement tI < tII < tIII < tIV is satisfied. The crossover times are
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tI ≡ tI/τr ∼
√
6/(Pe2 + D̃v) ≈ 0.11, tII ≡ tII/τr ∼ 4(Pe2 + D̃v)/(3Pe2 + 3D̃vγ̃v +

D̃v) ≈ 1.34, tIII ≡ tIII/τr ∼ [4 + 2Pe2 + 4D̃v/(1 − γ̃v
2)](1 − γ̃v)/2D̃v ≈ 202.8 and

tIV ≡ tIV /τr ∼ [4 + 2Pe2 + 2D̃v/{γ̃v(1 + γ̃v)}](1 − γ̃v)/2D̃v ≈ 2200. The dashed

line at Pe = v0/v̄ = 1.12 in Fig. (3.8)(a) shows two crossovers ⟨δr2⟩ ∼ t to ∼ t2

to ∼ t as tII < tI . The crossover times are t∗I ≡ t∗I/τr ∼ 2(1 − γ̃v)/D̃v ≈ 0.8 and

tIV ≡ tIV /τr ≈ 2× 103. Here, the first diffusive- ballistic crossover appears at t∗I as

t∗I < tI ≈ 1.3.

(ii) Fast relaxation of active speed; γv ≫ (d− 1)Dr : In the other limit of

(d − 1)Drt ≪ 1 and 2γvt ≫ 1, using e−2γvt = 0, e−((d−1)Dr+γv)t = 0 and expanding

of e−Drt around Drt = 0, Eq. (3.37) leads to

⟨δr2⟩ ≃
(
2dD +

2Dv

γv((d− 1)Dr + γv)

)
t+

2

3
(d− 1)Drv

2
0t

3. (3.42)

This predicts a third possible crossover from ⟨δr2⟩ ∼ t to ∼ t3 at

t′III ∼ [3(dD +Dv/{γv((d− 1)Dr + γv)})/(d− 1)Drv
2
0]

1/2. The final crossover

⟨δr2⟩ ∼ t3 to ∼ t can appear at

t′IV ∼ [3(dD + v20/(d− 1)Dr +Dv/{γv((d− 1)Dr + γv)})/(d− 1)Drv
2
0]

1/2, with

the crossover point obtained by comparing the t3 order term in Eq. (3.42) with t

order term in Eq. (3.40). If t′IV ≤ t′III these last two crossovers will not be possible.

We demonstrate such crossovers in 2d, in the limit of γvτr ≫ 1, in Fig. (3.8)(b).

The parameter values used are γ̃v = γvτr = 2×103, D̃v = Dvτr/v̄
2 = 1011. The solid

line in Fig. (3.8)(b) depicts the behavior at Pe = v0/v̄ = 2× 103. This exhibits all

four crossovers from ⟨r2⟩ ∼ t to ⟨r2⟩ ∼ t2 to ⟨r2⟩ ∼ t to ⟨r2⟩ ∼ t2 to finally ⟨r2⟩ ∼ t

as the requirement tI < tII < tIII < tIV is satisfied. In this case, tI ≡ tI/τr ∼[
6/(D̃v + Pe2)

]1/2
≈ 8×10−6, tII ≡ tII/τr ∼ 4(D̃v+Pe2)/

[
D̃v + 3D̃vγ̃v + 3Pe2

]
≈

7× 10−4,

t′III ≡ t′III/τr ∼
[
3[2 + D̃v/{γ̃v(1 + γ̃v)}]/Pe2

]1/2
≈ 1.4 × 10−1, and t′IV ≡

t′IV /τr ∼
[
3(2 + Pe2 + D̃v/{γ̃v(1 + γ̃v)})/Pe2

]1/2
≈ 1.7 and are identified in Fig. (3.8)(b).

The dashed line corresponding to Pe = v0/v̄ = 10 in Fig. (3.8)(b) shows two

71



Chapter 3

crossovers from ⟨δr2⟩ ∼ t, to ⟨δr2⟩ ∼ t3 to finally ⟨δr2⟩ ∼ t. As t′III ≈ t′IV ≈ 27.4,

the crossover from ⟨δr2⟩ ∼ t to ∼ t3 is absent. The crossover times are tI ≡ tI/τr ∼[
6/(D̃v + Pe2)

]1/2
≈ 8×10−6 and tII ≡ tII/τr ∼ 4(D̃v+Pe2)/

(
D̃v + 3D̃vγ̃v + 3Pe2

)
≈

7× 10−4.

Directed persistent motion: Displacement fluctuations ⟨δr2⟩ = ⟨r2⟩ − ⟨r⟩2

in the presence of external force can be directly calculated using the expressions of

⟨r2⟩ from Eq. (3.22) and ⟨r⟩ from Eq. (3.14). The initial position is assumed to be

r0 = 0, without any loss of generality. It is straightforward to check that ⟨δr2⟩ shows

the same displacement fluctuations as in Eq. (3.37) obtained for persistent motion.

As a result, at long times, while the mean squared displacement in the presence

of external force shows a ballistic behavior ⟨r2⟩ ∼ t2, in contrast, the displacement

fluctuation shows a diffusive behavior ⟨δr2⟩ ∼ t.

3.6.4 Components of displacement fluctuation

The positional spread of the ABP in parallel and perpendicular perpendicular direc-

tion with respect to the initial heading direction û0 is studied here to identify any

possible anisotropy in the dynamics. The mean displacements ⟨r∥⟩ = ⟨r⟩·û0 ̸= 0 and

⟨r⊥⟩ = ⟨r⟩− ⟨r∥⟩û0. Here ⟨r⊥⟩ = 0 in the absence of external drive. In this section,

we compute the parallel and normal components of displacement fluctuation.

Parallel component

We consider the initial active speed v1 = v0. Let us assume the initial orientation

of activity is towards the x-axis, û0 = x̂. The constant external force is F =

F0 r̂ where r̂ is the d-dimensional unit vector in the cartesian coordinate. We use

Eq. (3.5). Here r2∥ = x2, giving ⟨ψ⟩0 = 0, ⟨∇2
rψ⟩s = 2⟨1⟩s, ⟨∇2

uψ⟩s = 0, ⟨∂2
vψ⟩s = 0,
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⟨(v− v0)∂vψ⟩s = 0, ⟨vû ·∇ψ⟩s = 2⟨vxux⟩s, and ⟨F ·∇ψ⟩s = 2F0⟨r∥⟩s. Thus we find

⟨r2∥⟩s =
1

s

[
2D⟨1⟩s + 2⟨vxux⟩s + 2µF0⟨r∥⟩s

]
,

where ⟨r∥⟩s = v0/s(s + (d − 1)Dr) + µF0/s
2, already calculated in Section-(3.6).

To proceed we consider ψ = vxux, giving ⟨ψ⟩0 = 0, ⟨∇2
rψ⟩s = 0, ⟨∇2

uψ⟩s = −(d −
1)⟨vxux⟩s, ⟨û · ∇ψ⟩s = ⟨vu2

x⟩s, and ⟨F · ∇ψ⟩s = F0⟨vux⟩s, leading to ⟨vxux⟩s =

[⟨v2uxux⟩s+γvv0⟨xux⟩s+µF0⟨vux⟩s]/(s+(d−1)Dr+γv). Further, ⟨vux⟩s = v0/(s+

(d− 1)Dr), ⟨xux⟩s = (⟨vuxux⟩s + µF0⟨ux⟩s)/(s+ (d− 1)Dr). Substituting these we

get,

⟨vxux⟩s =
1

s+ (d− 1)Dr + γv

[
⟨v2uxux⟩s +

γvv0⟨vuxux⟩s
(s+ (d− 1)Dr)

]
+

v0µF0

(s+ (d− 1)Dr)2
,

Further, we calculate, ⟨vuxux⟩s = v0(s+2Dr)
s(s+2dDr)

and

⟨vvuxux⟩s =
v20(s+ 2Dr)

s(s+ 2dDr)
+

4DrDv

s(s+ 2γv)(s+ 2dDr)
+

2Dv(s+ 2γv + 2Dr)

(s+ 2γv)(s+ 2dDr)(s+ 2γv + 2dDr)
.

We use ψ = u2
x to find ⟨ψ⟩0 = 1, ⟨∇2

rψ⟩s = 0, ⟨∇2
uψ⟩s = −2d⟨u2

x⟩s+2/s, ⟨û·∇ψ⟩s = 0

to get −1 + s⟨uxux⟩s = −2dDr⟨uxux⟩s + 2Dr/s giving ⟨uxux⟩s = (s + 2Dr)/s(s +

2dDr). Thus putting together these relations, we obtain ⟨r2∥⟩ in the Laplace space

⟨r2∥⟩s =
2D

s2
+

2v20(s+ 2Dr)

s2(s+ (d− 1)Dr)(s+ 2dDr)

+
8DrDv

s2(s+ 2γv)(s+ 2dDr)(s+ γv + (d− 1)Dr)

+
4Dv(s+ 2γv + 2Dr)

s(s+ 2γv)(s+ 2dDr)(s+ 2γv + 2dDr)(s+ γv + (d− 1)Dr)

+
2v0µF0(2s+ (d− 1)Dr)

s2(s+ (d− 1)Dr)2
+

2µ2F 2
0

s3
. (3.43)
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Performing the inverse Laplace transform we find,

⟨r2∥⟩ = 2

(
D +

v20
(d− 1)dDr

)
t

+
v20
D2

r

(
(d− 1)e−2dDrt

d2(d+ 1)
+

2(3− d)e−(d−1)Drt

(d− 1)2(d+ 1)
+

d2 − 4d+ 1

(d− 1)2d2

)

+ 8DrDv

[−d2D2
r − 4dγvDr + dD2

r − γ2
v + γvDr

8d2γ2
vD

2
r((d− 1)Dr + γv)2

+
t

4dγvDr((d− 1)Dr + γv)

]

+
8DrDve

−2dDrt

8d2D2
r(dDr − γv)((d+ 1)Dr − γv)

− 8DrDv
e−((d−1)Dr+γv)t

((d+ 1)Dr − γv)((d− 1)Dr − γv)((d− 1)Dr + γv)2

+ 8DrDv
e−2γvt

8γ2
v(dDr − γv)((d− 1)Dr − γv)
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+ 4Dv

[
Dr + γv

4dγvDr(dDr + γv)((d− 1)Dr + γv)
− (d− 1)e−(2dDr+2γv)t

4dγv(dDr + γv)((d+ 1)Dr + γv)

]

+ 4Dv
((d− 1)Dr − γv)e

−2dDrt

4dγvDr(dDr − γv)((d+ 1)Dr − γv)

+ 4Dv

[
((3− d)Dr + γv)e

−((d−1)Dr+γv)t

((d+ 1)2D2
r − γ2

v)((d− 1)2D2
r − γ2

v)
− e−2γvt

4dγv(dDr − γv)((d− 1)Dr − γv)

]

+
2v0µF0

(d− 1)Dr

(1− e−(d−1)Drt)t+ µ2F 2
0 t

2. (3.44)

The parallel component of the displacement fluctuation ⟨δr2∥⟩ = ⟨r2∥⟩ − ⟨r∥⟩2 is,

⟨δr2∥⟩ = 2

(
D +

v20
(d− 1)dDr

)
t

+
v20
D2

r

(
(d− 1)e−2dDrt

d2(d+ 1)
+

8e−(d−1)Drt

(d− 1)2(d+ 1)
− e−2(d−1)Drt

(d− 1)2
− 4d− 1

(d− 1)2d2

)

+ 8DrDv

[−d2D2
r − 4dγvDr + dD2

r − γ2
v + γvDr

8d2γ2
vD

2
r((d− 1)Dr + γv)

+
t

4dγvDr((d− 1)Dr + γv)

]

+
8DrDve

−2dDrt

8d2D2
r(dDr − γv)((d+ 1)Dr − γv)

− 8DrDv
e−((d−1)Dr+γv)t

((d+ 1)Dr − γv)((d− 1)Dr − γv)((d− 1)Dr + γv)2

+ 8DrDv
e−2γvt

8γ2
v(dDr − γv)((d− 1)Dr − γv)

+ 4Dv

[
Dr + γv

4dγvDr(dDr + γv)((d− 1)Dr + γv)
− (d− 1)e−(2dDr+2γv)t

4dγv(dDr + γv)((d+ 1)Dr + γv)

]

+ 4Dv
((d− 1)Dr − γv)e

−2dDrt

4dγvDr(dDr − γv)((d+ 1)Dr − γv)

+ 4Dv

[
((3− d)Dr + γv)e

−((d−1)Dr+γv)t

((d+ 1)2D2
r − γ2

v)((d− 1)2D2
r − γ2

v)
− e−2γvt

4dγv(dDr − γv)((d− 1)Dr − γv)

]
,

(3.45)

independent of the external force F0.
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Figure 3.9: (color online) Components of displacement fluctuation, (a, c) ⟨δr2∥⟩ and (b, d)

⟨δr2⊥⟩ as a function of time t in 2d. (a, b) γ̃v = γvτr = 5 × 10−4, D̃v = Dvτr/v̄
2 = 2.5

with Pe = v0/v̄ = 22.36 (solid line), 1.12 (dashed line). (c, d) γ̃v = γvτr = 2 × 103,
D̃v = Dvτr/v̄

2 = 1011 with Pe = v0/v̄ = 2× 103 (solid line), 10 (dashed line). The inset
in Figure (c) (zoomed in view of the shaded region in main figure) shows a sub-diffusive
behavior in the parallel component of displacement fluctuation over an intermediate time
regime.

Perpendicular component

The fluctuation in the perpendicular component ⟨δr2⊥⟩ = ⟨δr2⟩−⟨δr2∥⟩. This implies,

⟨δr2⊥⟩ = 2(d− 1)

(
D +

v20
(d− 1)dDr

)
t

+
v20
D2

r

(
4e−(d−1)Drt

d2 − 1
− (d− 1)e−2dDrt

d2(d+ 1)
− 3d− 1

d2(d− 1)

)

+
2Dv

γv(γv + (d− 1)Dr)

[
t− 1− e−(γv+(d−1)Dr)t

(γv + (d− 1)Dr)
− 1− e−2γvt

2γv
+

e−2γvt − e−(d−1)Drt

((d− 1)Dr − γv)

]

− 8DrDv

[−d2D2
r − 4dγvDr + dD2

r − γ2
v + γvDr

8d2γ2
vD

2
r((d− 1)Dr + γv)

+
t

4dγvDr((d− 1)Dr + γv)

]
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− 8DrDve
−2dDrt

8d2D2
r(dDr − γv)((d+ 1)Dr − γv)

+ 8DrDv
e−((d−1)Dr+γv)t

((d+ 1)Dr − γv)((d− 1)Dr − γv)((d− 1)Dr + γv)2

− 8DrDv
e−2γvt

8γ2
v(dDr − γv)((d− 1)Dr − γv)

− 4Dv

[
Dr + γv

4dγvDr(dDr + γv)((d− 1)Dr + γv)
− (d− 1)e−(2dDr+2γv)t

4dγv(dDr + γv)((d+ 1)Dr + γv)

]

− 4Dv
((d− 1)Dr − γv)e

−2dDrt

4dγvDr(dDr − γv)((d+ 1)Dr − γv)

− 4Dv

[
((3− d)Dr + γv)e

−((d−1)Dr+γv)t

((d+ 1)2D2
r − γ2

v)((d− 1)2D2
r − γ2

v)
− e−2γvt

4dγv(dDr − γv)((d− 1)Dr − γv)

]

(3.46)

In Fig. (3.9) we show various possible features of ⟨δr2∥⟩ and ⟨δr2⊥⟩ at different pa-

rameter regimes.

3.7 Fourth order moments and kurtosis

In this section, we calculate the fourth-order moments of speed and displacement

analytically. For speed, the fourth-order moment is consistent with its Gaussian

process. We compare the analytic predictions of the fourth-order moment of dis-

placement with simulation results. We further compute the kurtosis of displacement

to capture the deviations of the ABP dynamics from Gaussian processes.

3.7.1 Fourth moment of speed

We consider the initial active speed of the particle to be v1 = Pev̄ and the ini-

tial position at the origin. In the similar procedure of calculation of lower-order

moments, using Eq. (3.5), we get,

⟨v4⟩s =
1

s+ 4γv

[
v40 + 12Dv⟨v2⟩s + 4γvv0⟨v3⟩s

]
,

77



Chapter 3

where, ⟨v2⟩s = v20/s + 2Dv/s(s + 2γv), ⟨v3⟩s = v30/s + 6Dvv0/s(s + 2γv). Finally,

fourth order moment of speed in Laplace space,

⟨v4⟩s =
v40
s

+
12Dvv

2
0

s(s+ 2γv)
+

24D2
v

s(s+ 2γv)(s+ 4γv)
.

Inverese Laplace transform leads to

⟨v4⟩ = v40 +
6Dv(γvv

2
0 +Dv)

γ2
v

(
1− e−2γvt

)
− 3D2

v

γ2
v

(
1− e−4γvt

)
.

Writing v = δv + ⟨v⟩, Wick’s theorem for a Gaussian process predicts ⟨v4⟩ =

⟨v⟩4 + 6⟨v⟩2⟨δv2⟩+ 3⟨δv2⟩2. The above expression agrees with this behavior.

3.7.2 Fourth moment of displacement

As before, using Eq. (3.5), we get

⟨r4⟩s =
1

s

[
4(d+ 2)D⟨r2⟩s + 4⟨v(û · r)r2⟩s + 4µ⟨(F · r)r2⟩s

]
, (3.47)

where ⟨r2⟩s was already calculated,

⟨v(û · r)r2⟩s =
1

s+ (d− 1)Dr + γv

[
2(2 + d)D⟨vû · r⟩s + ⟨v2r2⟩s + 2⟨v2(û · r)2⟩s

+γvv0⟨(û · r)r2⟩s + µ⟨v(F · û)r2⟩s + 2µ⟨v(F · r)(û · r)⟩s
]
,

and,

⟨vû · r⟩s =
1

s+ (d− 1)Dr + γv

[
⟨v2⟩s + γvv0⟨û · r⟩s + µ⟨vF · û⟩s

]
,

⟨v2r2⟩s =
1

s+ 2γv

[
2dD⟨v2⟩s + 2⟨v3û · r⟩s + 2Dv⟨r2⟩s + 2γvv0⟨vr2⟩s + 2µ⟨v2F · r⟩s

]
,

⟨v2(û · r)2⟩s =
1

s+ 2dDr + 2γv

[
2D⟨v2⟩s + 2Dr⟨v2r2⟩s + 2Dv⟨(û · r)2⟩s + 2⟨v3û · r⟩s

+2γvv0⟨v(û · r)2⟩s + 2µ⟨v2(F · û)(û · r)⟩s
]
,
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⟨(û · r)r2⟩s =
1

s+ (d− 1)Dr

[
2(2 + d)D⟨û · r⟩s + ⟨vr2⟩s + 2⟨v(û · r)2⟩s

+µ⟨(F · û)r2⟩s + 2µ⟨(F · r)(û · r)⟩s
]
,

We list all the required quantities in the following,

⟨v2⟩s =
v20
s

+
2Dv

s(s+ 2γv)
,

⟨v3⟩s =
v30
s

+
6Dvv0

s(s+ 2γv)
,

⟨v4⟩s =
v40
s

+
12Dvv

2
0

s(s+ 2γv)
+

24D2
v

s(s+ 2γv)(s+ 4γv)
,

⟨û · r⟩s =
1

(s+ (d− 1)Dr)
[v0⟨1⟩s + µ⟨F · û⟩s] ,

⟨(û · r)2⟩s =
1

s+ 2dDr

[
2D⟨1⟩s + 2Dr⟨r2⟩s + 2⟨vû · r⟩s + 2µ⟨(F · û)(û · r)⟩s

]
,

⟨v2û · r⟩s =
1

s+ (d− 1)Dr + 2γv

[
2Dv⟨û · r⟩s + ⟨v3⟩s + 2γvv0⟨vû · r⟩s

+2µ⟨v2F · û⟩s
]
,

⟨v3û · r⟩s =
1

s+ (d− 1)Dr + 3γv

[
6Dv⟨v(û · r)⟩s + ⟨v4⟩s + 3γvv0⟨v2û · r⟩s

+2µ⟨v3F · û⟩s
]
,

⟨vr2⟩s =
1

s+ γv

[
2dD⟨v⟩s + 2⟨v2û · r⟩s + γvv0⟨r2⟩s + 2µ⟨vF · r⟩s

]
,

⟨v(û · r)2⟩s =
1

s+ 2dDr + γv

[
2D⟨v⟩s + 2Dr⟨vr2⟩s + 2⟨v2û · r⟩s + γvv0⟨(û · r)2⟩s

+2µ⟨v(F · û)(û · r)⟩s] ,

and,

⟨F · û⟩s =
F0 · û0

s+ (d− 1)Dr

, ⟨(F · û)2⟩s =
(F0 · û0)

2

s+ 2dDr

⟨vF · û⟩s =
v0F0 · û0

s+ (d− 1)Dr

,

⟨v2F · û⟩s =
v20F0 · û0

s+ (d− 1)Dr

+
2DvF0 · û0

(s+ (d− 1)Dr)(s+ (d− 1)Dr + 2γv)
,
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⟨v3F · û⟩s =
v30F0 · û0

s+ (d− 1)Dr

+
6Dvv0F0 · û0

(s+ (d− 1)Dr)(s+ (d− 1)Dr + 3γv)
,

⟨(F · û)(û · r)⟩s =
1

s+ 2dDr

[
2Dr⟨F · r⟩s + ⟨v(F · û)⟩s + µ⟨(F · û)2⟩s

]
,

⟨F · r⟩s =
1

s

[
⟨vF · û⟩s + µF 2

0 /s
]
,

⟨vF · r⟩s =
1

s+ γv

[
⟨v2F · û⟩s + γvv0⟨F · r⟩s + µF 2

0 ⟨v⟩s
]
,

⟨v2F · r⟩s =
1

s+ 2γv

[
⟨v3F · û⟩s + 2γvv0⟨vF · r⟩s + µF 2

0 ⟨v2⟩s
]
,

⟨(F · r)(û · r)⟩s =
1

s+ (d− 1)Dr

[2D⟨F · û⟩s + ⟨v(F · û)(û · r)⟩s

+⟨vF · r⟩s + µ⟨(F · r)(F · û)⟩s + µF 2
0 ⟨û · r⟩s

]
,

⟨v(F · û)2⟩s =
1

s+ 2dDr + γv

[
2DrF

2
0 ⟨v⟩s + v0(F0 · û0)

2 + γvv0⟨(F · û)2⟩s
]
,

⟨v2(F · û)2⟩s =
1

s+ 2dDr + 2γv

[
2DrF

2
0 ⟨v2⟩s + v20(F0 · û0)

2 + 2Dv⟨(F · û)2⟩s

+2γvv0⟨v(F · û)2⟩s
]
,

⟨v(F · û)(û · r)⟩s =
1

s+ 2dDr + γv

[
2Dr⟨vF · r⟩s + ⟨v2F · û⟩s

+γvv0⟨(F · û)(û · r)⟩s + µ⟨v(F · û)2⟩s
]
,

⟨v2(F · û)(û · r)⟩s =
1

s+ 2dDr + 2γv

[
2Dr⟨v2F · r⟩s + 2Dv⟨(F · û)(û · r)⟩s

+⟨v3F · û⟩s + 2γvv0⟨v(F · û)(û · r)⟩s + µ⟨v2(F · û)2⟩s
]
,

⟨(F · û)r2⟩s =
1

s+ (d− 1)Dr

[2dD⟨F · û⟩s + 2⟨v(F · û)(û · r)⟩s

+2µ⟨(F · r)(F · û)⟩s] ,

⟨v(F · û)r2⟩s =
1

s+ (d− 1)Dr + γv

[
2dD⟨vF · û⟩s + 2⟨v2(F · û)(û · r)⟩s

+γvv0⟨(F · û)r2⟩s + 2µ⟨v(F · r)(F · û)⟩s
]
,

⟨(F · r)(F · û)⟩s =
1

s+ (d− 1)Dr

[
⟨v(F · û)2⟩s + µF 2

0 ⟨(F · û)⟩s
]
,

⟨v(F · r)(F · û)⟩s =
1

s+ (d− 1)Dr + γv

[
⟨v2(F · û)2⟩s + γvv0⟨(F · r)(F · û)⟩s

+µF 2
0 ⟨vF · û⟩s

]
,
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⟨v(F · r)(û · r)⟩s =
1

s+ (d− 1)Dr + γv

[
2D⟨vF · û⟩s + ⟨v2(F · û)(û · r)⟩s

+⟨v2F · r⟩s + γvv0⟨(F · r)(û · r)⟩s + µ⟨v(F · r)(F · û)⟩s + µF 2
0 ⟨vû · r⟩s

]
,

⟨(F · r)2⟩s =
1

s

[
2DF 2

0 /s+ 2⟨v(F · r)(F · û)⟩s + 2µF 2
0 ⟨F · r⟩s

]
,

⟨(F · r)r2⟩s =
1

s

[
2(d+ 2)D⟨F · r⟩s + 2⟨v(F · r)(û · r)⟩s + ⟨v(F · û)r2⟩s

+2µ⟨(F · r)2⟩s + µF 2
0 ⟨r2⟩s

]
.

Finally, inverse Laplace transform of Eq. (3.47) leads to ⟨r4⟩(t). The final expression

is too long to show here. We present the results in graphical form in Fig.(3.10),

comparing against direct numerical simulations.

3.7.3 Persistent motion

Here, we calculate the small and large time limit of the fourth order moment in the

absence of external force F = 0. Further, we analyze the behavior of ⟨r4⟩ at the

short and long time limits. In the short time limit, ⟨r4⟩ can be expanded around

t = 0 to obtain,

⟨r4⟩ = 4d(d+ 2)D2t2 + 4(d+ 2)Dv20t
3 +

(
v40 −

4(d+ 2)D

3

(
(d− 1)Drv

2
0 − 2Dv

))
t4

+
1

3

[
12Dvv

2
0 − 2(d− 1)Drv

4
0 + (d+ 2)D

(
(d− 1)2D2

rv
2
0 − 2(d− 1)DrDv − 6Dvγv

)]
t5

+O(t6), (3.48)

shows that at smallest time ⟨r4⟩ ∼ t2, which crosses over to ∼ t3 at tI = dD/v20. A

second crossover from ⟨r4⟩ ∼ t3 to ∼ t4 may appear at,

tII =
12(d+ 2)Dv20

3v40 − 4(d+ 2)D((d− 1)Drv20 − 2Dv)
,
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provided v40 > 4(d+ 2)D((d− 1)Drv
2
0 − 2Dv)/3. In long time limit, ⟨r4⟩ leads to,

⟨r4⟩ ≃ 4(2 + d) [(d− 1)Dr(Dv + dDγv((d− 1)Dr + γv)) + γv((d− 1)Dr + γv)v
2
0]

2
t2

d(d− 1)2D2
rγ

2
v((d− 1)Dr + γv)2

(3.49)

In Fig. (3.10)(a, b), we show ⟨r4⟩ as a function of time. It shows a good agreement

of analytic predictions for ⟨r4⟩ with simulation results. Fig. (3.10)(a) corresponds

to the limit Dr ≪ γv and Fig. (3.10)(b) corresponds to the limit Dr ≫ γv.

Directed persistent motion

Here, we show the short and long time limit of the fourth order moment of dis-

placement in the presence of an external force F . In the small time limit, ⟨r4⟩
gives,

⟨r4⟩ = 4d(d+ 2)D2t2 + 4(d+ 2)D
[
v20 + 2v0µ(F0 · û0) + µ2F 2

0

]
t3

+
[
(v20 + 2v0µ(F0 · û0) + µ2F 2

0 )
2 − 4(d+ 2)D [(d− 1)Drv0(v0 + 3µ(F0 · û0))

−2Dv] /3] t
4 +O(t5). (3.50)

This shows that at shortest times ⟨r4⟩ ∼ t2, which crosses over to ∼ t3 at

tI = dD/
[
v20 + 2v0µ(F0 · û0) + µ2F 2

0

]
.

A second crossover from ⟨r4⟩ ∼ t3 to ∼ t4 may appear at,

tII = 12(d+ 2)D
[
v20 + 2v0µ(F0 · û0) + µ2F 2

0

]
/
[
3(v20 + 2v0µ(F0 · û0) + µ2F 2

0 )
2

−4(d+ 2)D [(d− 1)Drv0(v0 + 3µ(F0 · û0))− 2Dv]] .

In the long time limit, ⟨r4⟩ leads to,

⟨r4⟩ ≃ µ4F 4
0 t

4. (3.51)
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Figure 3.10: (color online) Persistent motion: Plots of ⟨r4⟩ (a, b) and Kurtosis (K) (c, d)
as a function of time in two dimensions. (a, c) Parameter values used are γ̃v = γvτr = 102,
D̃v = Dvτr/v̄

2 = 4 × 104, and Pe = v0/v̄ = 7.07. (b, d) Parameter values used are
γ̃v = γvτr = 5 × 10−2, D̃v = Dvτr/v̄

2 = 0.25, and Pe = v0/v̄ = 3.54. The points denote
simulation results averaged over 106 independent trajectories. The solid lines depict
analytic results obtained from the inverse Laplace transform of Eq. (3.47). The orange
line in (c, d) corresponds to zero kurtosis. Initial conditions used are speed v1/v̄ = Pe
and orientation û0 = x̂.

In Fig. (3.11)(a), we show ⟨r4⟩ as a function of time.

3.7.4 Kurtosis: deviation from Gaussian process

For a Gaussian process with non zero mean, the definition of the fourth-order mo-

ment of displacement is,

µ4 := ⟨r2⟩2 + 2

d

(
⟨r2⟩2 − ⟨r⟩4

)
. (3.52)
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Figure 3.11: (color online) Directed persistent motion: (a) ⟨r4⟩ and (b) Kurtosis K as
a function of time in 2d at γ̃v = γvτr = 0.5, D̃v = Dvτr/v̄

2 = 1, Pe = v0/v̄ = 1, and
F̃0 = µF0/v̄ = 0.01 r̂. The solid line in (a) and (b) correspond to the inverse Laplace
transform of Eq. (3.47). The dashed line in (a) corresponds to the long-time scaling in
Eq. (3.51). The dashed line in (b) is corresponds to K = 0. The initial conditions used
are the speed v1/v̄ = Pe and the heading direction û0 = x̂.

Thus, deviations from such a Gaussian process is captured by the kurtosis

K =
⟨r4⟩
µ4

− 1. (3.53)

Persistent motion

Fig. (3.10)(c, d) shows the kurtosis as a function of time in the absence of external

force. A non zero value of the kurtosis indicates deviations of the stochastic process

from a possible Gaussian nature. A positive value corresponds to distributions

with tails longer than normal distributions, while a negative value corresponds to

tail less extreme than the normal distributions. Fig. (3.10)(c) corresponds to ⟨r4⟩
in Fig. (3.10)(a) in the limit of Dr ≫ γv. It shows deviations to positive values

at shorter time scales and negative values at longer times. The plot of kurtosis
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Fig. (3.10)(d) is corresponding to ⟨r4⟩ in Fig. (3.10)(b) in the limit of Dr ≪ γv. In

contrast to Fig. (3.10)(c), in this parameter regime, the kurtosis shows deviations

to negative values at short time that gets into positive values at longer times before

returning to Gaussian nature at the longest time scales. As it has been shown in

the previous chapter, the orientational fluctuations of the heading direction leads

to negative kurtosis in the intermediate times. The positive kurtosis observed here

is determined by the speed fluctuation time-scale. In Fig. (3.10)(c) with γ̃v ≫ 1 the

orientational fluctuation time-scale is longer than the speed fluctuation time-scale.

As a result the negative kurtosis appears at a later time and the positive kurtosis

at a shorter time. On the other hand, in Fig. (3.10)(c) due to γ̃v ≪ 1, the shorter

orientational fluctuation time-scale leads to the negative kurtosis at shorter time

and positive kurtosis at longer times.

Directed persistent motion

In the presence of a constant external force, we show the behavior of the fourth

order moment ⟨r4⟩ and kurtosis K as a function of time in Fig. (3.11). In the figure

the points denote simulation results, and the lines depict analytic expressions. In

the long time limit, ⟨r4⟩ ∼ t4, ⟨r⟩ ∼ t and ⟨r2⟩ ∼ t2, thus utilizing Eq. (3.52) and

(3.53) one obtains K = 0, as is shown in Fig. (3.11)(b).

3.8 Conclusions

We have studied the dynamics of active Brownian particles with speed fluctuations,

in the presence and absence of external directed force. In our model, two inde-

pendent time scales describe the stochastic change of heading direction and speed.

Here we considered the active speed generation using a simple energy pump imple-

mented via an Ornstein-Uhlenbeck process. We have extended the Fokker-Planck

equation based method developed in the previous chapter to calculate all the rel-

evant dynamical moments of motion in arbitrary dimensions. To summarize the
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main results:

1. We calculated the mean-squared displacement ⟨r2⟩ starting from the Fokker-
Planck approach. We showed how the result can also be derived using the
formal solutions of Langevin equations utilizing the auto-correlation function
of active speed. Instead, if one uses a time-scale separation assuming a faster
relaxation for the active speed utilizing the steady-state limit of this speed
correlation function, our results reduce to earlier results obtained in 2d [101,
108]. Moreover, we have calculated the fluctuations of displacement vector,
its components along and perpendicular to the initial heading orientation, the
fourth moment of the displacement vector, and its kurtosis.

2. We have identified several crossovers in the moments and fluctuations of dis-
placement vectors and analyzed the crossover time-scales using our expres-
sions. The number of crossovers depend on parameter values used and the
presence or absence of the external directed force.

3. We have calculated the kurtosis of displacement vector to show the deviations
from Gaussian process in intermediate times. For persistent motion, the kur-
tosis deviates towards a positive value when the speed fluctuation dominates
over the orientation fluctuation and a negative value when the orientation
fluctuation dominates over the speed fluctuation. Thus, kurtosis show oppo-
site behavior in the limit of γvτr ≪ 1 and γvτr ≫ 1. In the absence of speed
fluctuation, the kurtosis deviates towards the negative values at intermediate
times as we showed in Chapter 2.

In this chapter, the stochastic Schienbein-Gruler type mechanism of active speed

generation and the associated relaxation times played a crucial role in determining

the ABP dynamics. In the following chapter we will consider a different kind of

active process where the active speed is associated with an additive Gaussian noise.

3.9 Appendix

3.9.1 Autocorrelation of active speed

Here, we calculate the active speed auto-correlation function directly from the gov-

erning Langeving Eq. (3.2). The formal solution of Eq. (3.2) with the initial condi-

86



Chapter 3

tion v(t = 0) = v1 is

v(t) = v1 e
−γvt +

∫ t

0

(
γvv0 +

√
2DvΛ(t

′)
)
e−γv(t−t′) dt′, (3.54)

with ⟨Λ(t)⟩ = 0, and ⟨Λ(t)Λ(t′)⟩ = δ(t − t′). In this expression, the integration of

the second term gives,

I =

∫ t

0

γvv0 e
−γv(t−t′) dt′ = γvv0 e

−γvt

∫ t

0

eγvt
′
dt′ = v0(1− e−γvt).

This allows us to calculate the instantaneous mean speed

⟨v(t)⟩ = v1e
−γvt + v0

(
1− e−γvt

)
. (3.55)

Thus, the deviation of speed from its mean value

δv(t) ≡ v(t)− ⟨v(t)⟩ =
√

2Dve
−γvt

∫ t

0

Λ(t′)eγvt
′
dt′. (3.56)

As a result, the speed autocorrelation function of speed fluctuations can be calcu-

lated as

⟨δv(t1)δv(t2)⟩ = 2Dve
−γv(t1+t2)

∫ t1

0

dt′1

∫ t2

0

dt′2 e
γv(t′1+t′2)δ(t′1 − t′2) (3.57)

If (t1 > t2), the δ(t′1−t′2) restricts the integration over t′1 = t′2 line, then t′1 effectively

runs up to t2.

⟨δv(t1)δv(t2)⟩ =
Dv

γv

[
e−γv(t1−t2) − e−γv(t1+t2)

]
(3.58)

The steady state correlation may be obtained by, letting t1, t2 → ∞ and keeping

t1 − t2 finite,

⟨δv(τ)δv(0)⟩ = Dv

γv
e−γvτ (3.59)

where τ = t1−t2. In the steady state limit the instantaneous fluctuation, ⟨δv2(0)⟩ =
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Figure 3.12: (color online) Active speed autocorrelation ⟨δv(τ)δv(0)⟩ as a function of
time τ at D̃v = Dvτr/v̄

2 = 1, Pe ≡ v0/v̄ = 1 for γ̃v = γvτr = 10(◦), 1(△), 0.01(✸).
The points denote simulation results and the lines correspond to the function exp(−γvτ)
calculated in Eq. (3.60). Here ⟨δv(τ)δv(0)⟩ = ⟨δv(τ)δv(0)⟩/⟨δv2(0)⟩ with ⟨δv2(0)⟩ =
Dv/γv.

Dv/γv.

Thus we may write, speed correlation in normalized form,

⟨δv(τ)δv(0)⟩
⟨δv2(0)⟩ = e−γvτ (3.60)

The fluctuation in the speed approach to steady state, letting t1 = t2 ≡ t,

⟨δv2(t)⟩
⟨δv2(0)⟩ =

(
1− e−2γvt

)
(3.61)

3.9.2 Steady state probability distribution of speed and its cu-

mulative distribution

The evolution equation of probability distribution of speed P (v, t) derived from the

Schienbein-Gruler mechanism [101] of active speed generation as in Eq. (3.2), obeys
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Figure 3.13: (color online) Cumulative distribution function F (vm) in Eq. (3.65) as a
function of vm at Dvτr/v̄

2 = 1. (a) Pe = 0, 1, 5 and γvτr = 1. (b) γvτr = 0.1, 1, 10 and
Pe = 1.

the following Fokker-Planck equation

∂tP (v, t) = Dv∂
2
vP + γv∂v[(v − v0)P ]. (3.62)

The normalized steady-state distribution calculated from Eq. (3.62) is Gaussian

around the speed v0,

Ps(v) =

(
γv

2πDv

)1/2

exp
(
− γv
2Dv

(v − v0)
2

)
(3.63)

In the chemo-kinetic response, the ratio of speed v0 to the width of the distribution
√
γv/2Dv is a control parameter signifying the signal-to-noise ratio [101]. The

cumulative distribution function of speed up to a maximum value vm is

F (vm) =

(
γv

2πDv

)1/2 ∫ vm

−∞
dv exp

(
− γv
2Dv

(v − v0)
2

)
. (3.64)
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The cumulative distribution function can be expressed as

F (vm) =
1

2

[
1 + erf

(
vm − v0√
2Dv/γv

)]
. (3.65)

In Fig. (3.13), we show the variation of cumulative distribution function for speed

with changing Pe = v0/v̄ and γ̃v = γvτr. The probability of getting negative speed,

an effective active speed opposite to the heading direction, decreases with increase

of v0 and γv.
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4

Active Brownian Particle: active

speed associate with an additive

Gaussian noise

4.1 Introduction

As we have shown in the last two chapters, self-propelled particles performing per-

sistent motion, even at the single particle level, display a variety of new phenom-

ena [13, 87, 107]. First we considered active Brownian particles with constant active

speed. The impact of orientation fluctuations of the active heading direction alone

led to several crossovers of displacement fluctuations, anisotropic dynamics and

displacement fluctuations with tails of distributions less extreme than normal dis-

tributions over intermediate time-scales, before returning to an effective diffusion

over long times. As we have shown in the previous chapter, the dynamics gets

richer and shows additional crossovers in mean-squared displacement and displays

new kinds of non-Gaussian fluctuations over intermediate time-scales as one con-

siders fluctuations in active speed via the Schienbein-Gruler self-propulsion mecha-

nism [15, 101, 108]. In the current chapter, we consider a second kind of active speed

generation, taking the continuum limit of a chemical reaction driven self-propulsion
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in the presence of orientational fluctuations [16]. The Langevin equation describing

the dynamics is similar to that of an active Brownian particle (ABP) considered

in Chapter 2, with an active speed that has Gaussian fluctuations around a well-

defined mean. As in the simple ABP, the heading difection undergoes orientational

diffusion leading to a persistent motion.

The outline of the chapter is as follows. In Section-4.2, we describe the Langevin

model and derive the corresponding Fokker-Planck equation. Using the Laplace

transform technique we present how to calculate any moment of dynamical variables

at arbitrary dimensions. In Section-4.3, we present the calculations of the mean

squared displacement and displacement fluctuations. In Section-4.4, we demon-

strate the anisotropy in displacement fluctuations at short times and analyze their

crossovers as time elapses. Next, we calculate the distributions of scalar displace-

ments for different lengths of trajectory in Section-4.5. In Section-4.6, we calculate

the fourth moment of displacement and show the deviations from a Gaussian process

in terms of its kurtosis. Finally, in Section-4.7, we conclude presenting a summary

of results.

4.2 Model

The dynamics of this active particle in d-dimensions is described by its position

r = (r1, r2, . . . , rd) and orientation û = (u1, u2, . . . , ud), which is a unit vector

in d-dimensions. Let the infinitesimal increment at time t are denoted by dri =

ri(t + dt) − ri(t) and dui = ui(t + dt) − ui(t). In Ito convention, the equation of

motion of the ABP with chemically driven self-propulsion is given by [16],

dri = (v0 dt+ dBs) ui + dBt
i(t), (4.1)

dui = (δij − uiuj) dB
r
j (t)− (d− 1)Drui dt, (4.2)
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where the translational noise dBt due to the heat bath follows a Gaussian distri-

bution with its components obeying ⟨dBt
i⟩ = 0 and ⟨dBt

idB
t
j⟩ = 2Dδijdt. Within a

discrete lattice model in Ref. [16], the active displacement was considered to be as-

sociated with the release of a chemical potential. In the continuum limit it led to a

deterministic speed v0 and a Gaussian stochastic component dBs obeying ⟨dBs⟩ = 0

and ⟨dBsdBs⟩ = 2Dac dt. The rotational diffusion is governed by the Gaussian noise

dBr
i with ⟨dBr

i ⟩ = 0 and ⟨dBr
i dB

r
j ⟩ = 2Drδij dt.

It is straightforward to perform a direct numerical simulation of Eqs. (4.1) and

(4.2) using the Euler-Maruyama integration. The units of time and length are set

by τr = 1/Dr and ℓ̄ =
√
D/Dr, respectively. We express the unit of velocity as

v̄ = ℓ̄/τr =
√
DDr.

4.2.1 Fokker-Planck equation

Here, we first derive the Fokker-Planck equation from the governing Eqs. (4.1) and

(4.2). The average dispalcement can be calculated from Eq. (4.1) as ⟨dri⟩ = v0uidt.

Thus, the drift term is

lim
dt→0

⟨dri⟩
dt

= v0ui. (4.3)

The diffusive term is given by

lim
dt→0

⟨dridrj⟩
dt

= 2Dacuiuj + 2Dδij, (4.4)

The rotational diffusion term was already derived before in Chapter-2. The prob-

ability distribution P (r, û, t) of the position r and the active orientation û of the

particle follows the Fokker-Planck Eq. [91, 107]

∂tP (r, û, t) = −∂i

[
lim
dt→0

⟨dri⟩
dt

P

]
+

1

2
∂i∂j

[
lim
dt→0

⟨dridrj⟩
dt

P

]
+Dr∇2

uP, (4.5)

93



Chapter 4

Substituting Eq. (4.3) and Eq. (4.4) in Eq. (4.5), we get,

∂tP (r, û, t) = Dac(û ·∇)2P +Dr∇2
uP +D∇2P − v0 û ·∇P, (4.6)

where ∇ is the d-dimensional Laplacian operator, and ∇u is the Laplacian in the

(d− 1) dimensional orientation space.

Calculation of moments: In terms of the Laplace transform P̃ (r, û, s) =
∫∞
0

dte−stP (r, û, t), the Fokker-Planck equation takes the form,

−P (r, û, 0) + sP̃ (r, û, s) = Dac(û ·∇)2P̃ +Dr∇2
uP̃ +D∇2P̃ − v0 û ·∇P̃ .

Defining the mean of an observable ⟨ψ⟩s =
∫
dr dûψ(r, û)P̃ (r, û, s), multiplying

the above equation by ψ(r, û) and integrating over all possible (r, û) we find,

−⟨ψ⟩0 + s⟨ψ⟩s = Dac⟨(û ·∇)2ψ⟩s +Dr⟨∇2
uψ⟩s +D⟨∇2ψ⟩s + v0 ⟨û ·∇ψ⟩s, (4.7)

where, the initial condition sets ⟨ψ⟩0 =
∫
dr dûψ(r, û)P (r, û, 0). Without any loss

of generality, we consider the initial condition to follow P (r, û, 0) = δ(r)δ(û− û0).

Equation (4.7) can be utilized to compute all the moments of dynamical variables

as a function of time.

4.3 Mean squared displacement and displacement fluc-

tuation

In this section, we derive the mean-squared displacement and displacement fluctu-

ation utilizing Eq. (4.7). To illustrate this we first outline the calculation of ⟨r2⟩(t).
We set the inital position of the particle at origin. It is easy to see that ⟨r2⟩0 = 0 and

⟨∇2
ur2⟩s = 0. The average ⟨(û · ∇)2r2⟩s = 2⟨1⟩s and ⟨∇2r2⟩s = 2d⟨1⟩s. Note that

⟨1⟩s =
∫
drdûP̃ =

∫
drdû

∫∞
0

dte−stP =
∫∞
0

dte−st{drdûP} =
∫∞
0

dte−st = 1/s.

Further, ⟨û · ∇r2⟩s = 2⟨û · r⟩s. Thus Eq. (4.7) leads to s⟨r2⟩s = 2Dac/s +
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Figure 4.1: (color online) Time dependence of (a) ⟨r2⟩ in Eq. (4.9) and (b) ⟨δr2⟩ in
Eq. (4.13) in d = 2 for Pe = v0/v̄ = 1 (dashed line), 100 (solid line) with D̃a = Dacτr/ℓ̄2 =
1. The crossover times for Pe = 100 are (a) tI ≈ 6× 10−4 and tII ≈ 3 and (b) tI = 0.03
and tII ≈ 4/3.

2dD/s + 2v0⟨û · r⟩s. To complete the calculation, one needs to evaluate ⟨û · r⟩s
using the same Eq. (4.7). One may proceed like before, utilizing ∇2

uû = −(d−1)û,

⟨û · ∇ψ⟩s = ⟨û2⟩s = 1/s, to get s⟨û · r⟩s = −(d − 1)Dr⟨û · r⟩s + v0/s to finally

obtain ⟨û · r⟩s = v0/[s(s + (d − 1)Dr)]. Thus, finally, plugging this relation in the

expression of ⟨r2⟩s one finds

⟨r2⟩s =
2Dac

s2
+

2dD

s2
+

2v20
s2(s+ (d− 1)Dr)

. (4.8)

Performing the inverse Laplace transform, this leads to

⟨r2⟩ = 2d

(
D +

Dac

d
+

v20
(d− 1)dDr

)
t− 2v20

(d− 1)2D2
r

(
1− e−(d−1)Drt

)
. (4.9)

As is evident from Eq. (4.9), in the absence of active fluctuations Dac = 0, the

expression of ⟨r2⟩ agrees with the results for ABP in Chapter-2 and Ref.[107]. In

the small time limit (t → 0), ⟨r2⟩ in Eq. (4.9) leads to

⟨r2⟩ = 2d(D +
Dac

d
)t+ v20t

2 − (d− 1)

3
v20Drt

3 +O(t4),
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and in the long time limit (t → ∞), ⟨r2⟩ in Eq. (4.9) gives

⟨r2⟩ = 2d

(
D +

Dac

d
+

v20
(d− 1)dDr

)
t.

Thus the mean squared displacement is expected to show crossovers from a diffusive

⟨r2⟩ ∼ t to ballistic ⟨r2⟩ ∼ t2 behavior at tI ≈ 2(dD+Dac)/v
2
0, followed by another

ballistic to diffusive scaling at tII ≈ 3/(d−1)Dr. In Fig. (4.1)(a), the solid line shows

the crossovers from ⟨r2⟩ ∼ t to ⟨r2⟩ ∼ t2 finally to ⟨r2⟩ ∼ t for D̃a = 1 and Pe = 100.

The corresponding crossover times are tI ≡ tI/τr = 2(2 + D̃a)/Pe2 ≈ 6× 10−4 and

tII ≡ tII/τr ≈ 3.

Comparision with the Model in Chapter 3: Mean squared displacement

in Chapter 3 for persistent motion with Schienbein-Gruler mechanism for active

speed generation was

⟨r2⟩ = 2dDt+
2v20

(d− 1)Dr

(
t− 1− e−(d−1)Drt

(d− 1)Dr

)

+
2Dv

γv(γv + (d− 1)Dr)

(
t− 1− e−(γv+(d−1)Dr)t

γv + (d− 1)Dr

)

− 2Dv

γv(γv + (d− 1)Dr)

[
1− e−2γvt

2γv
− e−2γvt − e−(γv+(d−1)Dr)t

γv − (d− 1)Dr

]
. (4.10)

In the limit of Dv → ∞ and γv → ∞ while Dv/γ
2
v finite, Eq. (4.10) leads to

⟨r2⟩ = 2d

(
D +

Dv

dγ2
v

+
v20

(d− 1)dDr

)
t− 2v20

(d− 1)2D2
r

(
1− e−(d−1)Drt

)
,(4.11)

Comparing Eq. (4.11) with Eq. (4.9), we get Dac = Dv/γ
2
v . In Fig. (4.2), we compare

Eq. (4.9) with Eq. (4.10) in the limit of large Dv and large γv. In the long time

limit ⟨r2⟩ shows nice agreement for large Pe in Figures (4.2)(a, b).

Displacement: Using ψ = r, along with the result ⟨û⟩s = û0/(s + (d − 1)Dr)

allows us to calculate ⟨r⟩s = v0û0/s(s+ (d− 1)Dr) that leads to

⟨r⟩(t) = v0 û0

(d− 1)Dr

(
1− e−(d−1)Dr t

)
. (4.12)
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Figure 4.2: (color online) Comparision of ⟨r2⟩ in Eq. (4.9) (solid line) with ⟨r2⟩ in
Eq. (4.10) (dashed line) in two dimensions. Parameter values used are Pe = v0/v̄ = 1
(green solid line), 100 (red solid line) with D̃a = Dacτr/ℓ̄2 = 1. We used the conversion
of the parameters (Dvτr/v̄

2)/(γ2vτ
2
r ) = Dacτr/ℓ̄2 with Dvτr/v̄

2 = 0.1 (a) and 106 (b).

The displacement vector saturates to a finite value v0/(d− 1)Dr asymptotically in

the direction of initial orientation û0.

Displacement fluctuation: One can then calculate the displacement fluctu-

ation ⟨δr2⟩ = ⟨r2⟩ − ⟨r⟩2 directly to get

⟨δr2⟩ = 2d

(
D +

Dac

d
+

v20
(d− 1)dDr

)
t− v20

(d− 1)2D2
r

(
3− 4e−(d−1)Drt + e−2(d−1)Drt

)
.

(4.13)

In the small time limit of t → 0,

⟨δr2⟩ = 2(dD +Dac)t+
2

3
(d− 1)v20Drt

3 − 1

2
(d− 1)2v20D

2
rt

4 +O(t5).

Thus the mean squared displacement is expected to show crossovers from a diffusive

⟨δr2⟩ ∼ t scaling to ⟨δr2⟩ ∼ t3 scaling at tI ≈ [3(dD + Dac)/(d − 1)v20Dr]
1/2.

This would be followed by another crossover back to diffusive scaling near tII ≈
4/3(d− 1)Dr. On the other hand, in the high activity regime, one expects a single
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crossover from ⟨δr2⟩ ∼ t3 to ⟨δr2⟩ ∼ t at tII ≈ 4/3(d − 1)Dr. In Fig. (4.1)(b), the

solid line shows the crossovers ⟨δr2⟩ ∼ t to ∼ t3 finally to ∼ t for D̃a = 1 and

Pe = 100. The crossover times are tI ≡ tI/τr = [3(2 + D̃a)/Pe2]1/2 = 0.03 and

tII ≡ tII/τr = 4/3.

In the long time limit of t → ∞, ⟨δr2⟩ in Eq. (4.13) becomes diffusive ⟨δr2⟩ =
2dDefft with an effective diffusion constant

Deff = D +
Dac

d
+

v20
(d− 1)dDr

. (4.14)

Position- orientation cross-correlation : The equal time position- orien-

tation cross-correlation

⟨û.r⟩(t) = v0
(d− 1)Dr

(
1− e−(d−1)Dr t

)
(4.15)

remains the same as in Chapter 2 [107].

4.4 Components of displacement fluctuation

We assume the initial orientation of activity is towards the x-axis, û0 = x̂. Thus

r2∥ = x2 leads to s⟨r2∥⟩s = 2Dac⟨u2
x⟩s + 2D⟨1⟩s + 2v0⟨xux⟩s. To proceed, we use

ψ = u2
x to find ⟨ψ⟩0 = 1, (û ·∇)2ψ = 0, ⟨∇2

uψ⟩s = −2d⟨u2
x⟩s+2/s, û ·∇ψ = 0 to get

−1 + s⟨u2
x⟩s = −2dDr⟨u2

x⟩s + 2Dr/s gives ⟨u2
x⟩s = (s+2Dr)

s(s+2dDr)
. Further, we consider

ψ = xux, giving ⟨ψ⟩0 = 0, (û · ∇)2ψ = 0, ∇2
uψ = −(d − 1)xux, û · ∇ψ = u2

x, to

get s⟨xux⟩s = −(d− 1)Dr⟨xux⟩s+ v0⟨u2
x⟩s leading to ⟨xux⟩s = v0

s+(d−1)Dr
⟨u2

x⟩s. Thus

putting together all these relations we obtain

⟨r2∥⟩s =
2Dac(s+ 2Dr)

s2(s+ 2dDr)
+

2D

s2
+

2v20(s+ 2Dr)

s2(s+ (d− 1)Dr)(s+ 2dDr)
(4.16)
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Performing the inverse Laplace transform we find,

⟨r2∥⟩ = 2

(
D +

Dac

d
+

v20
(d− 1)dDr

)
t+

(d− 1)Dac

d2Dr

(
1− e−2dDrt

)

+
v20
D2

r

(
(d− 1)e−2dDrt

d2(d+ 1)
+

2(3− d)e−(d−1)Drt

(d− 1)2(d+ 1)
+

d2 − 4d+ 1

(d− 1)2d2

)
(4.17)

The relative fluctuation in the initial orientation is ⟨δr2∥⟩ = ⟨r2∥⟩ − ⟨r∥⟩2 where the

displacement ⟨r∥⟩ = ⟨r · û0⟩ = v0
(d−1)Dr

(
1− e−(d−1)Dr t

)
.

The fluctuation in the perpendicular component ⟨δr2⊥⟩ = ⟨r2⊥⟩ as the mean

displacement perpendicular to the initial orientation ⟨r⊥⟩ = 0. Thus ⟨δr2⊥⟩ = ⟨r2⟩−
⟨r2∥⟩. They are given by

⟨δr2∥⟩ = 2

(
D +

Dac

d
+

v20
(d− 1)dDr

)
t+

(d− 1)Dac

d2Dr

(
1− e−2dDrt

)

+
v20
D2

r

(
(d− 1)e−2dDrt

d2(d+ 1)
+

8e−(d−1)Drt

(d− 1)2(d+ 1)
− e−2(d−1)Drt

(d− 1)2
− 4d− 1

(d− 1)2d2

)
, (4.18)

⟨δr2⊥⟩ = 2(d− 1)

(
D +

Dac

d
+

v20
(d− 1)dDr

)
t− (d− 1)Dac

d2Dr

(
1− e−2dDrt

)

+
v20
D2

r

(
4e−(d−1)Drt

d2 − 1
− (d− 1)e−2dDrt

d2(d+ 1)
− 3d− 1

d2(d− 1)

)
. (4.19)

In two dimensions: The above results simplifies in two dimensions, setting d =

2. In the long time limit, both the components show the same diffusive scaling

⟨r2∥⟩, ⟨r2⊥⟩ ∼ t. In the small time parallel component ⟨δr2∥⟩ in Eq. (4.18) and the

normal component ⟨δr2⊥⟩ in Eq. (4.19) of the displacement fluctuation leads to

⟨δr2∥⟩(t → 0) = 2(D +Dac)t− 2DacDrt
2 +

8

3
DacD

2
rt

3 + (
1

3
v20 −

8

3
DacDr)D

2
rt

4

− (
7

15
v20 −

32

15
DacDr)D

3
rt

5 +O(t6) (4.20)
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Figure 4.3: (color online) Components of displacement fluctuation in two dimensions
for low activity (Pe2 ≤ D̃a). Points denote simulations results and lines depict analytical
predictions. The components of displacement fluctuations ⟨δr2∥⟩ (◦, red) and ⟨δr2⊥⟩ (△,
blue) correspond to Eq. (4.18) and Eq. (4.19) respectively. The parameter values used for
(a) D̃a = Dacτr/ℓ̄2 = 1 and Pe = v0τr/ℓ̄ = 0.1, (b) D̃a = Dacτr/ℓ̄2 = 1 and Pe = v0τr/ℓ̄ =
1, (c) D̃a = Dacτr/ℓ̄2 = 103 and Pe = v0τr/ℓ̄ = 31.62. The parallel component shows
sub-diffusive behavior as the condition Pe2 ≤ D̃a holds. (c) The crossover timescales are
t⊥I /τr = 10−3, and t⊥II/τr = 1.

⟨δr2⊥⟩(t → 0) = 2Dt+ 2DacDrt
2 + (

2

3
v20 −

8

3
DacDr)Drt

3 − (
5

6
v20 −

8

3
DacDr)D

2
rt

4

+O(t5) (4.21)

In the absence of speed fluctuation Dac = 0, the above result reduces to that

of ABPs obtained in Chapter 2 [107]. However, in the presence of Gaussian speed

fluctuations, the small time limit gives a diffusive scaling with ⟨δr2∥⟩(t → 0) ≈
2(D + Da)t and ⟨δr2⊥⟩(t → 0) ≈ 2Dt. In the long time limit again they become

diffusive, albeit with different diffusion constants

⟨δr2∥⟩(t → ∞) = 2

(
D +

Dac

2
+

v20
2Dr

)
t,

⟨δr2⊥⟩(t → ∞) = 2

(
D +

Dac

2
+

v20
2Dr

)
t. (4.22)
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The difference between these diffusion constants can be easily seen from,

⟨δr2∥⟩(t → ∞)− ⟨δr2∥⟩(t → 0) =

(
v20
Dr

−Dac

)
t

⟨δr2⊥⟩(t → ∞)− ⟨δr2⊥⟩(t → 0) =

(
v20
Dr

+Dac

)
t. (4.23)

Low activity limit v20 ≤ DacDr: Equation (4.23) suggests the final diffu-

sivity in ⟨δr2∥⟩ is smaller than the initial diffusivity in this limit. Thus one expects

⟨δr2∥⟩ to reduce with time to finally saturate to the form in Eq. (4.19). However,

the second relation in Eq. (4.23) suggests that the final diffusivity is always pos-

itive and ⟨δr2⊥⟩ transits from initial to final diffusion by increasing monotonically

with time. In the Fig. (4.3) we demonstrate these behaviors using a comparison of

numerical simulations and analytic expressions. In the Fig. (4.3)(a), parallel com-

ponent shows diffusive- subdiffusive- diffusive crossovers as Pe = 0.1 and D̃a = 1

hold the condition Pe2 < D̃a. In Fig. (4.3)(b), ⟨δr2∥⟩ shows diffusive- subdiffusive-

ballistic- diffusive crossovers as Pe = 1 and D̃a = 1 obey the condition Pe2 = D̃a.

In Fig. (4.3)(c), ⟨δr2∥⟩ shows diffusive- subdiffusive- ballistic- diffusive crossovers

as Pe = 31.62 and D̃a = 103 holds the condition Pe2 = D̃a. The crossovers

⟨δr2⊥⟩ ∼ t to ⟨δr2⊥⟩ ∼ t2, finally to ⟨δr2⊥⟩ ∼ t may appear when the third term

in Eq. (4.21) is negative, v20 < 4DacDr. Thus the crossover from ⟨δr2⊥⟩ ∼ t to

⟨δr2⊥⟩ ∼ t2 appears at t⊥I = [D/Dac]D
−1
r , followed by another crossover back to

⟨δr2⊥⟩ ∼ t at t⊥II ≈ [3DacDr/(v
2
0 − 4DacDr)]D

−1
r . The crossovers ⟨δr2⊥⟩ ∼ t to ∼ t2

to ∼ t are shown in Fig. (4.3)(c) for D̃a = 103 and Pe = 31.62 as the condi-

tion Pe2 < 4D̃a holds. The crossover times are t⊥I ≡ t⊥I /τr = 1/D̃a = 10−3 and

t⊥II ≡ t⊥II/τr ≈ [3D̃a/(Pe2 − 4D̃a)] = 1.

High activity limit v20 > DacDr: In this limit the final diffusivity in ⟨δr2∥⟩ is

larger than the short time diffusivity. The parallel component ⟨δr2∥⟩ first crosses over

from ⟨δr2∥⟩ ∼ t to ⟨δr2∥⟩ ∼ t3 at tI ≈ (3(1 + D/Dac)/4)
1/2D−1

r followed by another

crossover from ⟨δr2∥⟩ ∼ t3 to ⟨δr2∥⟩ ∼ t4 at tII ≈ [8DacDr/(v
2
0 − 8DacDr)]D

−1
r

and finally in the long time a further crossover from ⟨δr2∥⟩ ∼ t3 to ⟨δr2∥⟩ ∼ t at
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Figure 4.4: (color online) Components of displacement fluctuation in d = 2 for high
activity Pe2 > D̃a. The points denote numerical simulations and the lines denote theory.
The parallel (◦, red) and perpendicular (△, blue) components of displacement fluctuation
correspond to Eq. (4.18) and Eq. (4.19) respectively. The parameter values used are (a)
D̃a = Dacτr/ℓ̄2 = 1, Pe = v0τr/ℓ̄ = 102 and (b) D̃a = Dacτr/ℓ̄2 = 105 and Pe = v0τr/ℓ̄ =

1.58×104. In (a), the crossover times are denoted by t
∥
I/τr = 0.11, t∥II/τr = 0.71, t⊥I /τr =

1.7 × 10−2, and t⊥II/τr = 0.8. In (b), the crossover times are denoted by t
∥
I/τr = 0.13,

t
∥
II/τr = 0.71, t⊥I /τr = 10−5, t⊥II/τr = 1.2× 10−3, and t⊥III/τr = 0.8.

tIII ≈ [5(v20 − 8DacDr)/(7v
2
0 − 32DacDr)]D

−1
r when tI < tII < tIII is satisfied. The

crossover times are calculated by comparing different terms in Eq. (4.20). Thus, the

condition tIII > tII leads to v20 > ((68 +
√
1744)/5)DacDr and another condition

tII > tI leads to v20 < (16(D3
ac/3(D + Dac))

1/2 + 8Dac)Dr. Even for D = 0, the

condition tII > tI leads to v20 < (16/
√
3 + 8)DacDr, a relation that conflicts with

the assumption of v20 > DacDr. It suggests the ⟨δr2∥⟩ ∼ t3 is not possible. Thus,

the possible crossovers are ⟨δr2∥⟩ ∼ t to ⟨δr2∥⟩ ∼ t4, finally to ⟨δr2∥⟩ ∼ t. The first

crossover ⟨δr2∥⟩ ∼ t to ⟨δr2∥⟩ ∼ t4 can appear at t∥I = [6(D +Dac)/(v
2
0 − 8DacDr)]

1/3

and the second crossover ⟨δr2∥⟩ ∼ t4 to ⟨δr2∥⟩ ∼ t can appear at t
∥
II = tIII =

[5(v20−8DacDr)/(7v
2
0−32DacDr)]D

−1
r . In Fig. (4.4), we show the crossovers ⟨δr2∥⟩ ∼ t

102



Chapter 4

to ∼ t4 finally to ∼ t. The crossover times in Fig. (4.4)(a) for D̃a = 1 and Pe = 102

are t
∥
I ≡ t

∥
I/τr = [6(1 + D̃a)/(Pe2 − 8)]1/3 ≈ 0.11 and t

∥
II = t

∥
II/τr = [5(Pe2 −

8D̃a)/(7Pe2 − 32D̃a)] ≈ 0.71. Similarly, the crossover times in Fig. (4.4)(b) for

D̃a = 105 and Pe = 1.58× 104 are t
∥
I ≡ t

∥
I/τr ≈ 0.13 and t

∥
II = t

∥
II/τr ≈ 0.71.

One can separately analyze the expression of ⟨δr2⊥⟩ to identify a first crossover

from ⟨δr2⊥⟩ ∼ t to ⟨δr2⊥⟩ ∼ t2 at t⊥I = [D/Dac]D
−1
r followed by another crossover

from ⟨δr2⊥⟩ ∼ t2 to ⟨δr2⊥⟩ ∼ t3 at t⊥II ≈ 3Dac/(v
2
0 − 4DacDr), provided v20 > 4DacDr.

At t⊥III = [4(v20 − 4DacDr)/(5v
2
0 − 16DacDr)]D

−1
r a third crossover back to ⟨δr2⊥⟩ ∼ t

is expected.

Another possible scenario of crossovers is the following: (i) from ⟨δr2⊥⟩ ∼ t to

⟨δr2⊥⟩ ∼ t3 at t⊥′
I = [3DDr/(v

2
0 − 4DacDr)]

1/2D−1
r with condition v20 > 4DacDr +

3D2
acDr/D (t⊥II < t⊥I ), (ii) back to ⟨δr2⊥⟩ ∼ t at t⊥III = [4(v20 − 4DacDr)/(5v

2
0 −

16DacDr)]D
−1
r with condition v20 > [(47 +

√
417)/8]DacDr(t⊥II < t⊥III). Moreover,

tIII > tI leads to the condition v20 > 16(D−Dac)DacDr/(5D−4Dac). The crossovers

⟨δr2⊥⟩ ∼ t to ∼ t3 and finally to ∼ t are shown in Fig. (4.4)(a) for D̃a = 1,

Pe = 102. The crossover times are t⊥I ≡ t⊥I /τr = [3/(Pe2 − 4D̃a)]
1/2 = 1.7 × 10−2,

t⊥II ≡ t⊥II/τr = [4(Pe2 − 4D̃a)/(5Pe2 − 16D̃a)] = 0.8

Full crossovers are ⟨δr2⊥⟩ ∼ t to ⟨δr2⊥⟩ ∼ t2 at t⊥I = [D/Dac]D
−1
r with condition

v20 < 4DacDr+3D2
acDr/D (t⊥II > t⊥I ) to ⟨δr2⊥⟩ ∼ t3 at t⊥II = 3Dac/(v

2
0−4DacDr) with

condition v20 > [(47 +
√
417)/8]DacDr(t⊥III > t⊥II) to ⟨δr2⊥⟩ ∼ t with condition v20 >

4DacDr at t⊥III = [4(v20−4DacDr)/(5v
2
0−16DacDr)]D

−1
r . It shows in Fig. (4.4)(b) for

D̃a = 105 and Pe = 1.58× 104. The crossover times are t⊥I ≡ t⊥I /τr = 1/D̃a = 10−5,

t⊥II ≡ t⊥II/τr = 3D̃a/(Pe2 − 4D̃a) ≈ 1.2 × 10−3 and t⊥III ≡ t⊥III/τr = 4(Pe2 −
4D̃a)/(5Pe2 − 16D̃a) ≈ 0.8.

4.5 Displacement distribution

The transition in the dynamical crossovers realises via displacement distributions

at different length of the trajectories L = v0t/ℓ̄. In Fig. (4.5) we plot the distri-
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Figure 4.5: (color online) Probability distribution of displacement 2πp(r̃) at Pe =
v0τr/ℓ̄ = 31.6 and D̃ac = Dacτr/ℓ̄2 = 10 over different time-segments expressed as L =
v0t/ℓ̄ = 0.32 (a), 0.63 (b), 3.16 (c), 31.62 (d), 126.49 (e), and 316.23 (f). Here r̃ = r/L.

bution functions p(r̃) of the scaled separation r̃ = r/L at Pe = v0τr/ℓ̄ = 31.6

and D̃ac = Dacτr/ℓ̄
2 = 10. Note that here Pe gives a dimensionless measure of

persistence length of the trajectories. For the small length of the trajectories, the

displacement distributions in Fig. (4.5)(a, b) shows a Gaussian-like profile for the

length of the trajectories L = 0.32 (a) and 0.63 (b). It is due to the combined effect

of the uncorrelated Gaussian active noise in speed and the thermal translational

noise. It transforms to a distribution characterizing strongly extended trajectories

in Fig. (4.5)(d) at L = 31.62, via an intermediate regime of clear bimodality shown

in Fig. (4.5)(c) at L = 3.16. Here the ratio of length of the trajectories to the

persistence length is L/Pe = 0.1. This bimodality is maintained by the fluctuation

in active speed. At long times L = 316.23 the distribution returns to Gaussian

profile as in Fig. (4.5)(f) via again pronounced bimodality shown in Fig. (4.5)(e)

for L = 126.49 corresponding to L/Pe = 4. This bimodality is maintained by the

orientational fluctuations as in the ABPs of Chapter-2 [93, 107].
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4.6 Fourth moment and kurtosis

In this section, we calculate the fourth moment of displacement and use it to show

the deviations from Gaussian process using the kurtosis. We use Eq. (4.7) as for

calculations of other moments to compute ⟨r4⟩. The fourth oder moment in Laplace

space can be expressed as

⟨r4⟩s = 8[Dac + (d+ 2)D](Dac + dD)
1

s3
+

16Dac(Dac +D)

s2(s+ 2dDr)
+

32Dac(Dac +D)Dr

s3(s+ 2dDr)

+
8Dacv

2
0(5s+ 2(d− 1)Dr)

s3(s+ (d− 1)Dr)2
+

32Dacv
2
0(s+ 2Dr)

s3(s+ (d− 1)Dr)(s+ 2dDr)

+
8Dv20(d+ 2)(3s+ 2(d− 1)Dr)

s3(s+ (d− 1)Dr)2
+

8v40(3s+ 2(d+ 2)Dr)

s3(s+ (d− 1)Dr)2(s+ 2dDr)
. (4.24)

The calculation involves the following main steps,

s⟨r4⟩s = 4Dac(⟨r2⟩s + 2⟨(û · r)2⟩s) + 4(d+ 2)D⟨r2⟩s + 4v0⟨(û · r)r2⟩s,

s⟨û · r⟩s = −(d− 1)Dr⟨û · r⟩s + v0⟨1⟩s,

s⟨(û · r)2⟩s = 2Dac⟨1⟩s + 2Dr⟨r2⟩s − 2dDr⟨(û · r)2⟩s + 2D⟨1⟩s + 2v0⟨û · r⟩s,

s⟨(û · r)r2⟩s = 6Dac⟨û · r⟩s − (d− 1)Dr⟨(û · r)r2⟩s + (4 + 2d)D⟨û · r⟩s + v0⟨r2⟩s
+ 2v0⟨(û · r)2⟩s.
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where ⟨r2⟩s in Eq. (4.8) is already evaluated. Performing the inverse Laplace trans-

form, we obtain the time evolution of fourth moment,

⟨r4⟩(t) = 4[Dac + (d+ 2)D](Dac + dD)t2

+ 16Dac(Dac +D)

[
t

2dDr

− 1

(2dDr)2
(
1− e−2dDrt

)]

+ 32Dac(Dac + dD)Dr

[
t2

4dDr

− t

(2dDr)2
+

1

(2dDr)3
(
1− e−2dDrt

)]

+ 8Dacv
2
0

[
t2

(d− 1)Dr

+
t

(d− 1)2D2
r

+
3te−(d−1)Drt

(d− 1)2D2
r

− 4

(d− 1)3D3
r

(
1− e−(d−1)Drt

)]

+ 32Dacv
2
0

[
t2

2(d− 1)dDr

+
(d2 − 4d+ 1)t

2(d− 1)2d2D2
r

+
−3d3 + 11d2 − 5d+ 1

4(d− 1)3d3D3
r

]

+ 32Dacv
2
0

[
(d− 3)e−(d−1)Drt

(d− 1)3(d+ 1)D3
r

− (d− 1)e−2dDrt

4d3(d+ 1)D3
r

]

− 8 (d2v40 + 10dv40 + 25v40) e
−(d−1)Drt

(d− 1)4(d+ 1)2D4
r

+
4 (d3v40 + 23d2v40 − 7dv40 + v40)

(d− 1)4d3D4
r
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+
8te−(d−1)Drt (d3DDrv

2
0 + 2d2DDrv

2
0 − dDDrv

2
0 + dv40 − 2DDrv

2
0 − 7v40)

(d− 1)3(d+ 1)D3
r

+
4t2 (d5D2D2

r − 3d3D2D2
r + 2d3DDrv

2
0 + 2d2D2D2

r + 2d2DDrv
2
0 − 4dDDrv

2
0 + dv40 + 2v40)

(d− 1)2dD2
r

− 8t (d4DDrv
2
0 + d3DDrv

2
0 − 2d2DDrv

2
0 + d2v40 + 6dv40 − v40)

(d− 1)3d2D3
r

. (4.25)

For Dac = 0 this agrees with the fourth moment for ABPs in [107]. In two dimen-

sions, using d = 2, the relation simplifies to,

⟨r4(t)⟩ = 4 (Dac + 4D) (Dac + 2D) t2 + 16Dac(Dac +D)

[
t

4Dr

− 1

(4Dr)2
(
1− e−4Drt

)]

+ 32Dac(Dac + 2D)Dr

[
t2

8Dr

− t

(4Dr)2
+

1

(4Dr)3
(
1− e−4Drt

)]

+ 8Dacv
2
0

[
t2

Dr

+
t

D2
r

+
3te−Drt

D2
r

− 4

D3
r

(
1− e−Drt

)]

+ 32Dacv
2
0

[
t2

4Dr

− 3t

8D2
r

+
11

32D3
r

(
1− 32

33
e−Drt − 1

33
e−4Drt

)]

+
8te−Drt (12DDrv

2
0 − 5v40)

3D3
r

− 2t (16DDrv
2
0 + 15v40)

D3
r

+
v40e

−4Drt

18D4
r

− 392v40e
−Drt

9D4
r

+
87v40
2D4

r

. (4.26)

In the long time limit, t → ∞, the first term in the above expression dominates to

give,

⟨r4(t)⟩(t → ∞) ≈ 8

[
(Dac + 2D)2 +

2Dacv
2
0

Dr

]
t2 (4.27)

In the small time limit of t → 0, the expansion leads to,

⟨r4(t)⟩ = (12D2
ac + 32DacD + 32D2)t2 +

[
4(3Dac + 4D)v20 −

16

3
D2

acDr

]
t3

+

(
v40 +

16D2
acD

2
r

3
− 16

3
DDrv

2
0 −

20

3
DacDrv

2
0

)
t4

−
(
2

3
v40Dr +

64D2
acD

3
r

15
− 4DD2

rv
2
0

3
− 11DacD

2
rv

2
0

3

)
t5 +O(t6). (4.28)
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Figure 4.6: (color online) (a) Fourth moment and (b) kurtosis of displacement as a
function of time in d = 2 at D̃a = 1. Points denote numerical simulations and lines
denoted theory. (a) Two crossovers at Pe = 0.1 (red ◦): ⟨r4⟩ ∼ t2 to ∼ tα with α < 2
to ∼ t2. Three crossovers at Pe = 0.3 (green △): ⟨r4⟩ ∼ t2 to ∼ tα with α < 2 to ∼ tα

with α > 2 to a final ∼ t2. (c) Kurtosis as a function of time corresponding to (a). (b)
Kurtosis as a function of time corresponding to Pe = 0.1 (red solid line) and Pe = 0.3
(green dashed line).

Low activity limit: The difference between the small and long time fourth order

moment gives

⟨r4⟩(t → ∞)− ⟨r4⟩(t → 0) =
4Dac

Dr

(
4v20 −DacDr

)
t2. (4.29)

The fourth moment shows crossovers from ⟨r4(t)⟩ ∼ t2 to ⟨r4(t)⟩ ∼ tα with α < 2,

finally to ⟨r4(t)⟩ ∼ t2 behavior provided v20 < DacD/4 dominated by the fluctutaion

in the speed. And the condition to get the ballistic behavior in the intermediate

time regime is v20 ≥ DacD/4 dominated by the speed. In the Fig. (4.6)(a), we

show the ⟨r4(t)⟩ ∼ tα behavior in the intermediate time regime. The solid line at

Pe = 0.1 and D̃a = 1 in Fig. (4.6)(a) shows the crossovers from ⟨r4(t)⟩ ∼ t2 to

⟨r4(t)⟩ ∼ tα with α < 2, finally to ⟨r4(t)⟩ ∼ t2 as the condition Pe2 < D̃a/4 holds.

The dashed line, Pe = 0.3 and D̃a = 1 in Fig. (4.6)(a) shows the crossovers from

⟨r4(t)⟩ ∼ t2 to ⟨r4(t)⟩ ∼ t<2 to ⟨r4(t)⟩ ∼ t>2, finally to ⟨r4(t)⟩ ∼ t2 as the condition

Pe2 > D̃a/4 holds.
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Figure 4.7: (color online) (a) Fourth moment and (b) kurtosis of displacement as a
function of time in d = 2 at D̃a = 1. (a) Two crossovers at Pe = v0τr/ℓ̄ = 4 (▽) at
tI ≈ 0.17 and tII ≈ 6.38. Three crossovers at Pe = v0τr/ℓ̄ = 10 (✸) at tI ≈ 0.027,
tII ≈ 0.32, and tIII ≈ 1.42. (b) Kurtosis as a function of time at Pe = 4 (solid line) and
Pe = 10 (dashed line).

High activity limit: The small time expansion shows that at smallest time

⟨r4(t)⟩ ∼ t2 which crosses over to ⟨r4(t)⟩ ∼ t3 at tI = 3(3D2
ac+8D(Dac+D))/[3(3Dac+

4D)v20 − 4D2
acDr] provided v20 > 4D2

acDr/[3(3Dac + 4D)].

Further crossovers depend on the activity : In Fig. (4.7)(a) solid line corresponds

to D̃a = 1 and Pe = 4 shows a first crossover from ⟨r4(t)⟩ ∼ t2 to ∼ t3 that appears

at tI ≡ tI/τr = 3(3D̃2
a + 8(1 + D̃a))/[3(3D̃a + 4)Pe2 − 4D̃2

a] ≈ 0.17. The second

crossover from ⟨r4(t)⟩ ∼ t3 to ∼ t2 appears at tII ≡ tII/τr = 4[3(3D̃a + 4)Pe2 −
4D̃2

a]/[3Pe4 + 16D̃2
a − 4(4 + 5D̃a)Pe2] ≈ 6.38 as the condition tIII ≡ tIII/τr =

5[3Pe4 + 16D̃2
a − 4(4 + 5D̃a)Pe2]/[10Pe4 + 64D̃2

a − 5(4 + 11D̃a)Pe2] ≈ 0.73 < tII

is satisfied.

In Fig. (4.7)(a) dashed line, D̃a = 1 and Pe = 10 shows first crossover from

⟨r4(t)⟩ ∼ t2 to ∼ t3 that appears at tI ≡ tI/τr = 3(3D̃2
a + 8(1 + D̃a))/[3(3D̃a +

4)Pe2 − 4D̃2
a] ≈ 0.027. The second crossover from ⟨r4(t)⟩ ∼ t3 to ∼ t4 appears at

tII ≡ tII/τr = 4[3(3D̃a +4)Pe2− 4D̃2
a]/[3Pe4+16D̃2

a − 4(4+5D̃a)Pe2] ≈ 0.32. The

final crossover ⟨r4(t)⟩ ∼ t4 to ∼ t2 appears at tIII ≡ tIII/τr = 5[3Pe4 + 16D̃2
a −
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Figure 4.8: (color online) Deviation from Gaussian nature: A heat map of kurtosis K
for different Pe and time t in d = 2 at D̃a = 1.

4(4 + 5D̃a)Pe2]/[10Pe4 + 64D̃2
a − 5(4 + 11D̃a)Pe2] ≈ 1.42.

Calculation of Kurtosis and deviations from Gaussian nature: For

the quantitative study of the active particle models and their comparison with the

experimental realizations, we calculate kurtosis as a parameter to show the deviation

from Gaussian behavior. The fourth moment of a general Gaussian process obeys

µ4 = ⟨r2⟩2 + 2

d

(
⟨r2⟩2 − ⟨r⟩4

)
. (4.30)

In Eq. (4.25) we have already computed ⟨r4⟩(t) in d-dimensions for our model ABP

with chemically driven self-propulsion. It is then straightforward to evaluate the

kurtosis in d-dimensions defined as

K =
⟨r4⟩
µ4

− 1. (4.31)

We show the variation of kurtosis as a function of time in Fig. 4.6(b) and Fig. 4.7(b).

The deviation from the Gaussian process shows positive kurtosis in the small-time

regime due to the speed fluctuation. Fig. 4.6(b) at low Pe shows that positive

kurtosis at small time directly goes to a vanishing kurtosis in the long time limit.

In Fig. 4.7(b), at a relatively high Pe value, the deviation from the Gaussian pro-
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cess goes from small-time positive kurtosis to intermediate time negative kurtosis

to a long time zero kurtosis. At the intermediate time, non-zero negative kurto-

sis emerges due to the persistence of active motion. For all activity, the kurtosis

asymptotically goes to zero at long time. In Fig. (4.8), we show a heat map of

kurtosis as a function of time for speed ranges from 0 to 50.

It is interesting to note here that the models of self-propulsion that we studied

are aimed to provide reasonable description of experiments on various self-propelled

agents. Sometimes the simple Gaussian mechanism of active Ornstein-Uhlenbeck

process (AOUP) is invoked to analyze such experiments. Our study clearly indi-

cates that active Brownian particles with speed and orientational fluctuations will

show deviations from such a Gaussian process in the intermediate time regime. A

comparison of our predictions with experiments then can illustrate to what extent

simple processes like AOUP suffice to describe such experimental results.

4.7 Conclusions

We have studied the dynamics of active Brownian particles where active speed is

associated with additive Gaussian noise. We observed that the crossovers observed

in mean squared displacement and displacement fluctuation are similar to ABPs

without speed fluctuations [107] in Chapter 2. We compared the mean squared

displacement obtained for this model with that of Chapter 3. For fast speed relax-

ation γv → ∞ and large speed fluctuations Dv → ∞ mean squared displacement in

Schienbein-Gruler model in Chapter 3 reduces to the results in the current chap-

ter. In the long time limit, the behavior is similar if one identifies Dac = Dv/γ
2
v .

We observed anisotropy in the components of the displacement fluctuation. For

low activity limit, ⟨δr2∥⟩ shows subdiffusive behavior in the intermediate timescale

while ⟨δr2⊥⟩ shows there a ballistic behavior. For high activity limits, both the com-

ponents of displacement fluctuation exhibit ballistic behavior in the intermediate

time scales. The displacement distribution undergoes a transition from Gaussian

to extended trajectories back to Gaussian via two intermediate bimodal regimes.
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The two bimodalities are characterized by speed fluctuations and persistence. Fur-

ther, we calculated the fourth moment of displacement and the deviation from the

Gaussian process in the intermediate time regime. It is interesting to note that the

active Ornstein-Uhlenbeck process is sometimes invoked to study active particles.

The non-Gaussian behavior described here can be utilized to identify differences of

active particle behavior from such Gaussian processes.
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Filament- motor proteins system

under loading

5.1 Introduction

In the previous chapters, we investigated the three models of active particles and

showed rich physics at the single-particle level. In this chapter, we extend our study

to motor proteins that collectively drive a rod-like filament. Cytoskeletal filaments

and associated motor proteins (MP) stabilize the structure of the cell and deter-

mine its dynamics [22, 48]. MP attaches to a filament via an active non-equilibrium

process hydrolyzing ATP. The cross-linking MPs extending towards one end of the

polar filament can shear filament pairs against each other. Within a living cell,

the filaments form a meshwork, in which each filament encounters forces due to

its surrounding [49–51]. This force majorly comes from active processes [41]. Re-

cent studies showed that entropic force effects like depletion and diffusible passive

cross-linkers lead to a significant sliding on overlapping filaments [56, 110–112]. The

gliding motion of filaments on motor proteins assay uses to study the dynamics of

cytoskeletal filaments outside the living cell. The competition between opposing

groups of MPs can lead to spontaneous oscillations in gliding assays [60]. Fila-

ment motion under cooperative MPs and position-dependent load that could arise
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from passive cross-linkers or harmonic trap showed emergence of stable limit cycle

oscillations [56–59]. Similar spontaneous oscillations observe in many contexts in

cell biology [64, 65], e.g., sarcomere oscillations, mitotic spindle oscillations, and

chromosome oscillations [66–69].

Using mean-field theory and stochastic simulations, we consider the motion of a

filament in a gliding assay in the presence of an external force. As has been shown

recently, the depletion potential in filament bundles can change from a linear to

harmonic form with an increase in filament number [110]. We consider an external

force that could be constant or be a function of filament position. The filament on

MP assay under constant loading shows a dynamical crossover from stable to unsta-

ble phase. Whereas, in the presence of an elastic loading, the filament shows limit

cycle oscillations when the number of MPs is large than a critical value [57, 67]. We

show how the onset of spontaneous oscillations depends on the MP activity in terms

of its extension rate and detachment force, which can be tuned, e.g., by changing

ATP concentration [113–115]. We present a linear stability analysis of mean-field

equations to find phase diagrams showing linearly stable and unstable phases, sep-

arated from stable and unstable spirals. We compare this with numerical solutions

of the non-linear equations. The boundary between linear instability and spiral

with instability disappears once nonlinearities consider, and the whole region shows

stable limit cycle oscillations. We show how a critical number of MPs required to

get the onset of spontaneous oscillatory behavior depends on the stiffness of the

elastic load acting on the filament. This property might utilize by cells to sense

the stiffness of the extra-cellular matrix. The mean-field phase diagrams constitute

our first main result. We present a derivation of the mean-field equations for bound

MPs using the probability of bound and unbound MPs. In this way, we can identify

the limitations in the approximation involved in the two approaches. However, the

complete numerical simulation of the model, distinguishing the individual MPs and

incorporating the stochastic nature of the dynamics, shows good agreement with

the mean-field prediction of the supercritical Hopf bifurcation boundary identifying

the onset of spontaneous oscillations. It is our second main result. Deep inside
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the oscillatory phase, the dynamics show a behavior typical of relaxation oscilla-

tors. The predictions of stable oscillatory behavior obtained from the mean-field

equations show good agreement with the stochastic simulations. In our analysis,

we use parameter values corresponding to microtubule and kinesin motor proteins.

It allowed our predictions amenable to direct experimental verification.

The chapter organizes as follows. In Section-5.2 we present our model. The

linear stability analysis and its comparison with solutions of non-linear mean-field

equations present in Section-5.3. Next, we present the derivation of the mean num-

ber of attached MPs using the Fokker-Planck approach in Section-5.4. In Section-

5.5, we describe a detailed stochastic simulation method of our model and compare

the results with the Fokker-Planck mean-field approach. Finally, we conclude by

summarizing the main results in Section-5.6.

5.2 Model

We consider a gliding assay set up (Fig. (5.1)) in which the tail end of the MPs are

attached irreversibly to a coverslip. The MPs are assumed to be active harmonic

linkers having stiffness km. The head end of MPs can attach to a segment of rigid

filament floating on the assay within a cutoff range rc with a rate ωa in a diffusion-

limited manner. The maximum number of MPs that can attach to the filament of

length L is N = LϕMP , where ϕMP is the linear density of MPs attached to the

substrate. The attached head of each MP extends along the filament in a directed

fashion, from negative to positive end of the filament. This active extension requires

energy consumption from ATP hydrolysis that brings the system out of equilibrium.

The rate of extension in i-th MP denotes an active velocity vim. It depends on the

load force f i
l = kmy

i exerted on the MP due to the extension yi itself. We consider

115



Chapter 5

Figure 5.1: (color online) Schematic diagram of the model where a motile MT filament
is attached with a harmonic trap of stiffness constant KT . When attached, kinesin walks
along the filament towards right with a velocity vm, pulling the filament towards left.
Figure is adapted from Subhadip Ghosh’s thesis.

a piece-wise linear relation [60, 116]

vim(f
i
l ) =





v0 for f i
l ≤ 0

v0

(
1− f i

l

fs

)
for 0 < f i

l ≤ fb, fb > fs

−vback for f i
l > fb

(5.1)

where fs denotes the stall force and v0 stands for the intrinsic MP velocity. For a

load force beyond stall, fl ≥ fb > fs, the velocity saturates to an extremely small

negative value vback [60, 116], while supportive loads do not affect the intrinsic

MP motion. Assuming the MPs to be forming slip bonds, the load dependent

detachment rate is expressed as ωoff = ωd exp(|f i
l |/fd). The attachment detachment

ratio breaks detailed balance.

All the parameters v0, ωa, ωd, fs, and fd characterizing MPs are potentially func-

tions of the ATP concentration in the ambient fluid. An assumption of Michaelis-

Menten kinetics of ATP hydrolysis used to describe the ATP dependence of v0 for

kinesin, where v0 increases linearly for small ATP concentrations to eventually sat-

urate [114, 117]. Previous analysis of kinesin run-lengths demonstrated the ATP

dependence of fd [56, 114]. A change in v0 leads to various interesting dynamical

regimes. We return to this point later in the chapter.

The overdamped dynamics of the filament position x determine by the mechan-
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ical force balance,

γf ẋ = Fm + Fe (5.2)

where the left hand side corresponds to the friction force characterized by γf and

associated to the relative motion of the filament ẋ := dx/dt with respect to the

substrate. The nm number of attached motor proteins exert a total force Fm =

−∑nm

i=1 f
i
l , and Fe denotes the external loading that acts against the drive of the

MPs. The filament motion can in turn drag the attached MPs along with it, such

that the extension of i-th MP is given by

ẏi = vim(f
i
l ) + ẋ. (5.3)

5.3 Mean field theory

In this section, we first present a mean-field description of the model. We utilize

it to obtain linear stability predictions for dynamical phases and phase transitions

presence of external loading on the filament. Numerical solutions of the non-linear

mean-field equations use to compare with the linear stability results.

We assume all the MPs to be equivalent within the mean-field approximation,

and describe them using the same average extension y = (1/nm)
∑nm

i=1 y
i, where nm

denotes the number of attached MPs. To express the equations in a dimensionless

form we use the energy scale set by kBT , the time scale ω−1
d , and the length scale

l0 =
√
kBT/γfωd. The unit of force is set by f =

√
kBTγfωd. Within mean field

approximation, the dynamics is described by three coupled non-linear differential

equations for dimensionless forms of filament position x̃ = x/l0, mean extension of
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MPs ỹ = y/l0, and the attached fraction of MPs ñm = nm/N ,

dx̃

dτ
= F̃e −Nñmk̃mỹ,

dỹ

dτ
= ṽ0

(
1− k̃mỹ

f̃s

)
+

dx̃

dτ
,

dñm

dτ
= (1− ñm)ω̃ − ñm exp

[
k̃mỹ

f̃d

]
. (5.4)

In the above equations we used the dimensionless time τ = tωd, spring constant

of MPs k̃m = kml0/f , attachment ratio ω̃ = ωa/ωd, stall force f̃s = fs/f , and

detachment force f̃d = fd/f . In the presence of an external load acting against

directed MPs, the mean MP extension remains positive. This allows us to express

the mean detachment rate as ωoff = ωd exp(kmy/fd). We return to this point in

Section-5.4.

In numerical estimates throughout this chapter, we use parameter values typical

of microtubule-kinesin assays shown in Table-5.1. These values set the unit of

length l0 =
√
kBT/γfωd = 33 nm, force f = kBT/l0 = 0.125 pN, and velocity

v = l0ωd = 33 nm/s. In the following, we first perform a linear stability analysis of

Eq. (5.4) using a constant loading F̃e.

Table 5.1: Parameters: Two values of v0 and fd correspond to ATP concentrations of
5µM and 2mM respectively.

Definition Parameters Values
active velocity v0 0.006, 0.8µm/s [114, 118]
stall force fs 7.5 pN [116, 118]
back velocity vback 0.02µm/s [116]
detachment force fd 1.8, 2.4 pN [56]
attachment rate ωa 5, 20/s [114, 119, 120]
detachment rate ωd 1/s [118]
motor stiffness km 1.7 pN/nm [56] 1, 0.3 pN/nm [122]
MT viscous friction γf 893 kBT-s/µm2 [112]
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5.3.1 Constant loading

The fixed points of the system of equations is obtained by setting all the time

derivatives of Eq. (5.4) to zero to obtain,

k̃mỹ0 = f̃s, ñ0
m = ω̃/[ω̃ + exp(f̃s/f̃d)] = F̃e/Nf̃s, (5.5)

The last relation determines the loading F̃e corresponding to the fixed point of a

system of N MPs characterized by attachment ratio ω̃, stall force f̃s and detachment

force f̃d. In the absence of position dependence of the external force, the fixed point

is x̃- independent. Its stability can be analyzed considering the evolution d|ψ⟩/dτ =

a |ψ⟩ of a small perturbation |ψ⟩ = (δx̃, δỹ, δñm), where a denotes the stability

matrix with elements

a11 = 0, a12 = −k̃mNñ0
m, a13 = −f̃sN, a21 = 0,

a22 = −
(
µ̃+ k̃mNñ0

m

)
, a23 = a13, a31 = 0,

a32 = −(k̃m/f̃d)ω̃(1− ñ0
m), a33 = −ω̃/ñ0

m,

where µ̃ := ṽ0/ỹ0. Diagonalizing the stability matrix a gives the characteristic

equation λ(λ2 + pλ + q) = 0 with solutions λ1 = 0, and the other two eigenvalues

given by λ± = (1/2)[−p±
√

p2 − 4q]. Here p = −(a22 + a33) > 0 always, and

q = (a22a33 − a13a32) (5.6)

may change sign, thereby controlling the stability of the fixed point. In this case,

the smaller eigenvalue λ− remains negative, λ+ can become positive when q changes

sign from positive to negative. Thus q = 0 line denotes the boundary between stable

and unstable fixed points. This phase boundary is shown in Fig. (5.2).

The filament moves in a direction opposite to the extension of MPs. Thus, it

maintains the force balance in a stable phase. In the unstable phase, the extension of

MPs cannot stabilize the filament position, which slides in the direction of extension
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Figure 5.2: (color online) Phase diagram under constant loading in ṽ0− f̃d plane shown
using the heat map of the quantity q defined in Eq. (5.6). We use parameter values typical
of a microtubule- kinesin system, k̃m = 450 (km = 1.7 pN/nm), f̃s = 60, ω̃ = 20 and use
N = 5 number of MPs. The color-box shows the mapping of q-values to the color code.
The light blue (yellow) region denotes unstable (stable) phase under perturbation.

of the attached MPs. However, since the discriminant p2 − 4q = (a22 − a33)
2 +

4a13a32 > 0, the quadratic equation does not support any imaginary part in the

eigenvalues. Thus oscillatory behavior, stable or unstable, is ruled out. Under

constant external loading, the filament driven by MPs cannot sustain oscillations.

5.3.2 Elastic loading

For elastic loading F̃e = −K̃T x̃. It might generate on the filament by trapping one

of its ends by a laser tweezer or atomic force microscope tip. As in the previous case,

we perform a linear stability analysis. The fixed points of the mean-field dynamics

are given by

k̃mỹ0 = f̃s, ñ0
m = ω̃/[ω̃ + exp(f̃s/f̃d)], x̃0 = − ñ0

mNf̃s

K̃T

.
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The small perturbations around the fixed point |ψ⟩ = (δx̃, δỹ, δñm) evolves with

d|ψ⟩/dτ = a′ |ψ⟩ where the elements of the stability matrix a′ are given by

a′11 = −K̃T , a
′
12 = −k̃mñ

0
m N, a′13 = −f̃sN,

a′21 = a′11, a
′
22 = −(µ̃+ k̃mNñ0

m), a
′
23 = a′13,

a′31 = 0, a′32 = −(k̃m/f̃d)ω̃(1− ñ0
m), a

′
33 = −ω̃/ñ0

m,

where, as before, µ̃ := ṽ0/ỹ0. In the case of constant loading, the matrix element

a11 was zero, reducing one eigenvalue to zero. The other two eigenvalues were

determined by a quadratic equation. However, for elastic loading, a′11 ̸= 0 and the

eigenvalues are given by the full cubic equation

λ3 + Aλ2 + Bλ+ C = 0 (5.7)

In terms of different matrix elements A = −Tr(a′), B = 1
2
(aiiajj − aijaji) where

we implied summation over repeated indices, and C = −det(a′). They can be

expressed as

A = µ̃+ K̃T + ω̃/ñ0
m + ñ0

mk̃m N

B = µ̃K̃T +
ω̃

ñ0
m

(µ̃+ K̃T ) + k̃mω̃

[
1− f̃s

f̃d
(1− ñ0

m)

]
N (5.8)

C = µ̃K̃T ω̃/ñ0
m.

Properties of these coefficients determine the existence of different phases and the

dynamical behavior of the system. A cubic polynomial has eight possible combi-

nations of real and complex roots. Here A is positive definite, C is positive semi-

definite, while B can change its sign. These strong restrictions eliminate four com-

binations for roots to the cubic polynomial λ1,2,3. The remaining four combinations

characterize the four different phases in the system. The possible combinations are

as follows: (i) All three eigenvalues λ1,2,3 are real negative, characterizing a linearly

stable (s) phase. (ii) λ1 is real negative, but λ2,3 are real positive characterizing a
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linearly unstable (u) phase. (iii) λ1 is real negative. On the other hand λ2,3 are

complex conjugate pairs with negative real part, λ2,3 = −α ± iβ, characterizing a

decaying oscillation of perturbations in stable spiral (ss) phase. (iv) λ1 is real neg-

ative though λ2,3 are complex conjugates with positive real part. λ2,3 = α± iβ with

α > 0 denotes oscillations with growing amplitude in unstable spiral (us) phase.

Phase transitions

(a) Phase boundary between linearly (un) stable and (un) stable spiral phase:

The complex conjugate roots disappear as the minimum of the polynomial

p(λ) = λ3 + Aλ2 + Bλ touches the line p(λ) = −C, corresponding to two de-

generate eigenvalues. The minimum of p(λ) is at λm = −A
3
+ 1

3

√
A2 − 3B. This

condition lead to the phase boundary,

C =

[
A

3
+

2

3

√
A2 − 3B

] [
−A

3
+

1

3

√
A2 − 3B

]2
(5.9)

For B ≥ 0, the boundary is between linear stable (s) and stable spiral (ss) phases.

On the the hand, for B < 0, it denotes the boundary between unstable spiral (us)

and linearly unstable (u) phases.

(b) Phase boundary between stable spiral and unstable spiral phases:

As the sign of the real part α of complex conjugate roots λ2,3 = α± iβ changes

from negative to positive the system becomes unstable and start to oscillate. This

transition is captured by setting α = 0. This leads to the condition

C − AB = 0 (5.10)

The growing amplitudes of oscillations in us phase predicted by linear stability anal-

ysis gets stabilized by non-linearities into stable limit cycle oscillations, as we show

later in Section-5.4 using Fokker-Planck equations and Section-5.5 using stochastic

simulations. This denotes a supercritical Hopf bifurcation to a stable limit cycle,
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e.g., at a critical number of MPs N∗ ( Fig. (5.3)(a)). The expression of N∗ can be

obtained by solving Eq. (5.10), a quadratic equation in terms of N∗. Note that in

the absence of elastic loading KT = 0 the polynomial coefficient C = 0. As a result

Eq. (5.10) cannot be satisfied, and the Hopf bifurcation disappears.

At the supercritical Hopf bifurcation, the imaginary part of the eigenvalue

β =
√
B, so that the MP- filament system shows oscillations with a frequency

fω =
√
B/2π. Clearly, the frequency of oscillations fω depends on the number of

MPs, ATP-dependent activity of MPs determined by active velocity, attachment

detachment rates, stall force, and detachment force, apart from the effective elastic

constant of the external loading force.

Phase diagrams

Using Eqs. (5.9) and (5.10) we present two phase diagrams showing the transitions

between the above mentioned phases in Fig. (5.3)(a, b). We use parameter values

corresponding to kinesin-microtubule assays (Table-5.1).

In Fig. (5.3)(a), we show the phase diagram in number of MPs N - and attach-

ment ratio ω̃ plane. This indicates the requirement of a threshold number of MPs

N∗ to get sustained oscillations in the us phase. In addition, sustained oscilla-

tions depend on the activity in the system, parametrized in terms of attachment-

detachment ratio ω̃, active velocity ṽ0 and the detachment force f̃d. The lines in the

plot show phase boundaries obtained from linear stability analysis, using Eqs. (5.9)

and (5.10). The boundary between ss and us phase appears via a supercritical Hopf

bifurcation. The full non-linear dynamics corresponding to Eq. (5.4) show decaying

oscillations in ss phase (△), and limit cycle oscillations (�) in the region denoted

by us and u. Clearly, once the non-linearities are considered, the boundary between

us and u phase become irrelevant, the whole region inside the us boundary shows

limit cycle oscillations.

In Fig. (5.3)(b) we further characterize these dynamical phase transitions in

terms the of detachment force f̃d and active velocity ṽ0. As before, the linear sta-
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Figure 5.3: Phase diagram for filament in MP assay under elastic loading in N − ω̃
plane, with k̃m = 450, ṽ0 = 24.24, f̃s = 60, f̃d = 19.2, K̃T = 83 kept fixed. The lines
denote the linear stability phase boundaries between linearly stable (s), stable spiral (ss),
unstable spiral (us), and linearly unstable (u) phases. The points denoted by △ and �
indicate decaying oscillations and limit cycle oscillations, respectively, corresponding to
the full non-linear dynamics in Eq. (5.4). Phase diagram for filament in MP assay under
harmonic trap in ṽ0 − f̃d plane, keeping k̃m = 450, ω̃ = 20, f̃s = 60, N = 5 and K̃T = 83
fixed.

bility analysis shows boundaries between s, ss, us and u phases. The consideration

of non-linearities shows that the whole region of us and u display limit cycle oscil-

lations. The stable limit cycle phase appears from a stable spiral via a supercritical

Hopf bifurcation. This transition will be explored in further detail in Section-5.5
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Figure 5.4: The linear stability phase boundary between the stable spiral (blue: ss)
and unstable spiral (yellow: us) phase in the plane of elastic loading stiffness KT and
MP number N is shown using the heat map of C − AB in Eq. (5.10). The color box
shows the mapping for the values of the function. Parameters used correspond to kinesin-
microtubule assay, keeping k̃m = 450, ω̃ = 20, f̃s = 60, f̃d = 19.2, ṽ0 = 24.24 fixed.
The points denoted by △ and � indicate decaying oscillations (ss) and stable limit cycle
oscillations (us), respectively, corresponding to the full non-linear dynamics shown in
Eq. (5.4). Here we express KT in units of pN/nm.

using numerical simulations of the stochastic dynamics governing the MPs and fil-

ament. Note that the phase boundaries between ss and s in Fig. (5.3)(a, b) are

inconsequential, as both the phases are stable in long time limit.

In Fig. (5.4), we show how the onset of stable limit cycle oscillations (us) depends

on the number of MPs N recruited for a given rigidity KT of the elastic loading. The

plot uses parameter values corresponding to microtubule-kinesin MP assay, at an

ATP concentration of 2mM. The minimum number of MPs required for the onset of

spontaneous oscillations increases with the stiffness KT of the substrate. While the

particular calculations are performed for microtubule-kinesin system, the physical

mechanism is equally applicable for acto-myosin systems. Our simple setup has a

parallel in the rigidity sensing by cells, where contractile acto-myosin system couples

to the extra-cellular matrix (ECM) via an adhesion complex consisting of alpha-

actinin and integrin [123, 124]. The range of KT values used in Fig. (5.4) belongs
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to the range of rigidities of sub-micron elastomeric pillars used in cell spreading

experiments [124]. The cell may utilize an increase of processive myosin bundles,

required for the onset of oscillations (tugging), as a strategy to sense the ECM

stiffness [124, 125]. In fact, larger multifilament assemblies of myosin is noted near

more rigid substrate [124].

The parameter values used in the above phase diagrams correspond to a gliding

assay of microtubule on kinesin MPs (Table-5.1). The elastic loading on the fila-

ment can be applied by optical tweezers or atomic force microscopes [57, 122, 126].

In Fig. (5.3)(a, b), we used a value of dimensionless stiffness K̃T that corresponds

to 0.3 pN/nm. While the location of phase boundaries depends on K̃T , the qual-

itative features remain unaltered. In the limit of extremely small K̃T , however,

the harmonic trap can act like a constant loading, as was shown in Ref. [127].

Within the cell, our study has relevance for the relative sliding motion of filaments

where the loading might be provided by other cellular components, or the filament

bending [67], and may have implications for rigidity sensing by cells [123, 124].

We considered length stabilized filaments, which are typically used in gliding assay

experiments, thus disregarding the possible effects of active polymerization depoly-

merization of filaments in living cells [22].

5.4 Fokker-Planck approach to mean field

In this section, we present a Fokker-Planck description, derive the mean-field equa-

tions, and discuss its limitations. Finally, we perform detailed numerical simulations

of the full stochastic model and compare the results with mean-field predictions.

Having established the phase diagrams using mean field equations and linear

stability analysis, in this section we use a Fokker-Planck approach [67] involving

the probability distributions Pa,d(y, t) of attached and detached fractions of MPs to

derive and analyze the mean field equations. The distribution functions obey the
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normalization
∫∞
−∞(Pa + Pd) dy = 1, and evolve as

∂tPa + ∂yJa = ωaPd − ωdPa

∂tPd + ∂yJd = −ωaPd + ωdPa, (5.11)

where, the probability currents

Ja = ẏPa(y, t)−Da ∂yPa(y, t)

Jd = −νyPd(y, t)−Dd ∂yPd(y, t). (5.12)

Here Da, Dd are the diffusion coefficient of attached and detached MPs, respectively,

and ν is the relaxation rate of the extension for the detached MPs.

As the typical relaxation rate is much faster than the attachment rate, ν ≫ ωa,

one can assume the detached MPs relaxes immediately to equilibrium distribution,

Pd(y, t) = ñd(t)A exp
(
− kmy

2

2kBT

)
(5.13)

with normalization A = (km/2πkBT )
1/2. As a result, the fraction of detached

MPs ñd(t) =
∫∞
−∞ dyPd(y, t). This is related to the fraction of attached MPs

ñm(t) =
∫∞
−∞ dyPa(y, t) via the conservation of total probability ñm(t) = 1− ñd(t).

Integrating the first equation of Eq. (5.11) we get

dñm

dt
= (1− ñm)ωa − ⟨ωd(y)⟩ñm (5.14)

where ⟨ωd(y)⟩ :=
∫∞
−∞ dyPa(y, t)ωd(y)/

∫∞
−∞ dyPa(y, t). Using the expression for slip

bond ωd(y) = ωd exp(km|y|/fd) leads to

dñm

dt
= (1− ñm)ωa − ωd⟨ekm|y|/fd⟩ñm (5.15)

By Jensen’s inequality ⟨ekm|y|/fd⟩ ≥ ekmȳ/fd with ȳ = ⟨|y|⟩ denoting the mean

extension in the attached state. Thus the actual relaxation dñm/dt is slower than
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Figure 5.5: (color online) (a, b) Kymographs show the time evolution of the proba-
bility distributions of MPs with extension ỹ: (a) in the attached state (Pa), and (b) in
the detached state (Pd). The color-box describes the values of probability distributions.
The relaxation dynamics are determined by dimensionless diffusion constants D̃a = 15.6,
D̃d = 17.4, and the relaxation rate ν̃ = 80. Other parameter values used are ṽ0 = 50,
f̃d = 4, k̃m = 4.57, ω̃ = 5, f̃s = 14.29, N = 160 and K̃T = 4.57. (c) Phase diagram for
harmonically trapped microtubule-kinesin assay in ṽ0-f̃d plane, at fixed k̃m = 4.57, ω̃ = 5,
f̃s = 14.29, N = 160 and K̃T = 4.57. The points denote the two phases characterized by
decaying oscillations (△) and stable limit cycle oscillations (�) obtained from numerical
simulations. The solid black line identifies the boundary of supercritical Hopf-bifurcation
predicted by Eq. (5.10). (d, e) Dynamics corresponding to open ◦. (d) Time series of x̃
(solid line) and ñm (dashed line). (e) Unstable limit cycle corresponding to time series of
growing oscillation in (d). (f, g) Dynamics corresponding to open △. (d) Time series of
x̃ (solid line) and ñm (dashed line). (e) Stable limit cycle corresponding to time series of
decaying oscillation in (f).

that assumed in Eq. (5.4).

The active extension and relaxation dynamics in terms of Pa,d(y, t) is shown in

Fig. (5.5) by numerically integrating the Fokker-Planck Eqs. (Eqs. (5.11) and (5.12))

along with the evolution of filament position x ( Eq. (5.2) ), and mean extension of

MPs following

ẏ = vm(y) + ẋ. (5.16)
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In the above equation the piecewise linear form of vm is used from Eq. (5.1) replacing

the load force fl = kmy. In Eq. (5.2), at this point, we use Fm = −km
∑nm

i=1 y
i =

−km
∫∞
−∞ dy y Pa(y, t). This reduces Eq. (5.2) to

γf ẋ = −KTx− km

∫ ∞

−∞
dy y Pa(y, t). (5.17)

In plotting this graph we used Dd = kBT/γf , Da < Dd, and ν = km/γf . The last

choice maintains ν ≫ ωa. The parameters used correspond to kinesin-microtubule

system (Table-(5.1)). Here the unit of length is chosen to be l0 = 8 nm, the dimer-

size of microtubules [22]. The unit of force is f = kBT/l0 = 0.525 pN, and time is

ω−1
d = 1 s. As before, we express dimensionless extensions ỹ = y/l0, x̃ = x/l0 and

dimensionless time τ = ωdt.

Here, γf = 893 kBT -s-µm−2 = 3.75 pN-s-µm−1, in dimensionless unit γ̃f =

0.057. Thus, we re-define linear stability coefficients A, B, and C,

A = µ̃+
K̃T

γ̃f
+

ω̃

ñ0
m

+
ñ0
mk̃m N

γ̃f

B =
µ̃K̃T

γ̃f
+

ω̃

ñ0
m

(
µ̃+

K̃T

γ̃f

)
+

k̃mω̃

γ̃f

[
1− f̃s

f̃d
(1− ñ0

m)

]
N (5.18)

C =
µ̃K̃T ω̃

γ̃f ñ0
m

.

Due to the directed nature of the MP extension and the loading acting against

MPs on an average, the mean extension ỹ of the attached fraction remains posi-

tive (Fig. (5.5)(a) ), a fact used in replacing exp(km|ỹ|/fd) by exp(kmỹ/fd) in the

mean field description of Eq. (5.4). As Fig. (5.5)(a) shows in terms of the evolution

of Pa(ỹ, τ), the mean extension grows slowly up to a maximum, before relaxing back

rapidly to zero in a time periodic manner. This is a characteristic of relaxation os-

cillators [128]. With detachment of one MP, the shared load on other attached MPs

increases, increasing the effective rate of detachment. This mediates an avalanche

of MP detachment leading to the rapid relaxation. Once relaxed, MPs reattaches,

maintaining oscillations. The avalanche in detachments lead to an associated rapid
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Figure 5.6: (color online) Schematic representation of Microtubule-kinesin motors.
Motile microtubule filament attaches with a harmonic trap of stiffness constant KT . The
attached active kinesin represent in blue head walks along the filament towards the right
with a velocity vm, pulling the filament towards the left. Pluronic F-127 used for surface
blocking.

increase in Pd(ỹ, τ) (Fig. (5.5)(b) ). Note that the distribution Pd(ỹ, τ) maintains

a maximum at ỹ = 0, and is always symmetric around ỹ = 0, vindicating the

simplification used in Eq. (5.13).

Performing the numerical integration over a range of activity ṽ0 and detachment

force f̃d we obtain the phase diagram in Fig. (5.5)(c). It shows two phases, one is

characterized by decaying oscillations corresponding to stability (△), and the other

displays stable limit cycle oscillations (�). The phase boundary obtained from

numerical integration shows good agreement with analytic result, Eq. (5.10).

5.5 Stochastic simulation

In this section, we describe the stochastic simulation method of our model. We

compare the simulation results with the numerical integration of Fokker-Planck

equations.

We perform a stochastic simulation of the MP-filament model described in

Section-5.2. The schematic diagram of the stochastic simulation method present in

Fig. (5.6). We consider a kinesin-microtubule system with the microtubule held in

its positive end using a harmonic trap of strength KT . Myosin- F-actin with the
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Figure 5.7: (color online) Time evolutions of (a)microtubule displacement x̃(τ), and
(b)mean kinsein extension ỹ(τ). (c)A parametric plot of x̃(τ) and ỹ(τ) shows stable limit
cycle. (d) Correlation function of microtubule displacement Cx̃(τ) in the time-periodic
steady state. The red (green) lines in all these figures correspond to numerical simulations
(solutions to the Fokker-Planck based mean field equations). We used ṽ0 = 50, f̃d = 4.
All other parameter values are the same as in Fig. (5.5)(c).

F-actin held by an elastic load provided by a laser tweezer was considered before in

the experiment, Ref. [57]. We model the microtubule as a connected rigid string of

σ = 8 nm segments. In this section, we use l0 = σ as the unit of length, which sets

the unit of force f = kBT/l0 = 0.525 pN. We still use the unit of time ω−1
d = 1 s.

The i-th kinesin can attach to a microtubule segment within the cutoff or capture

radius(Fig. (5.6)) rc/l0 = 1.0 stochastically with rate ωa. When attached, the MP

extends towards the plus( minus ) end of the microtubule stochastically with a rate

of vm/l0 with vm > 0( vm < 0 ). The instantaneous load force on the i-th MP is

f i
l = kmy

i, expressed in terms of the extension yi(t). We use Eq. (5.1) for the load

dependence of the extension rate. The MPs detach from the filament stochastically

with the rate ωd exp(km|yi|/fd). Thermal fluctuation of micotubule considered as

Gaussian noise with diffusion constant of microtubule DMT = kBT/γf ∼ 10−3µm2

sec−1. Thus, the time evolution of filament position in Eq. (5.2) with thermal fluc-

tuation integrates numerically using Euler-Maruyama integration. We simulate a

large number of MPs N = 160 to compare with mean-field results.
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The dynamics deep inside the stable limit cycle phase is illustrated in Fig. (5.7),

using results from numerical simulations. We plot the evolutions of filament po-

sition x̃(τ) and mean extension of kinesins ỹ(τ) deep inside the limit cycle phase

(ṽ0 = 50, f̃d = 4). They show anharmonic oscillations with a well defined periodic-

ity (Fig. (5.7)(a,b) ). The slow extension (increase in x̃) followed by rapid relaxation

is a typical relaxation oscillator behavior [128]. Here MP detachment avalanches

the rapid relaxation. When presented as a parametric plot in x̃-ỹ plane, they clearly

show a stable limit cycle, although with a spread in the trajectories due to their in-

herent stochastic nature (Fig. (5.7)(c) ). Similar spread has been observed in in vitro

experiments [57]. The limit cycle oscillations are independent of initial conditions.

Using the time series in Fig. (5.7)(a), we obtain the two-time correlation function

of the microtubule displacement Cx̃(τ) = ⟨δ̃x(τ)δ̃x(0̃)⟩/⟨δ̃x2(0̃)⟩ where δx = x−⟨x⟩
is measured in the time-periodic steady state shows in Fig. (5.7)(d).

We compare the simulation results with the Fokker Planck description devel-

oped in the previous subsection. For that we use the equation for Pa(ỹ, τ) using

Eqs. (5.11), (5.12) and the expression of Pd(ỹ, τ) from Eq. (5.13). To determine

ñd(τ) = 1− ñm(τ) we use Eq. (5.15). These equations are solved numerically along

with Eq. (5.16) and (5.17). The comparisons are displayed in Fig. (5.7), and show

semi-quantitative agreement.

5.6 Conclusions

We have studied the dynamics of a cytoskeletal filament in a motor protein (MP)

assay under external loading. We used a mean-field description along with linear

stability analysis to determine various phase boundaries. Under constant loading,

the system shows a transition from stable to unstable behavior. The over-damped

active system under harmonic loading displays an emergence of spontaneous oscil-

lations via a supercritical Hopf bifurcation. In linear stability analysis, this appears

as a boundary between a stable and unstable spiral phase. The non-linearities

make the boundary between unstable spiral and linear instability irrelevant, with
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the system showing stable limit cycle oscillations in both of them. The increase in

the critical number of MPs required at the onset of stable limit cycle oscillations

with an increase in the stiffness of elastic loading may be utilized by spreading

cells for sensing the stiffness of the extra-cellular matrix. Using a Fokker-Planck

description, we analyzed the limitations of the mean-field equations used. Finally,

we performed numerical simulations involving stochastic dynamics of individual

MPs and the filament. The resulting phase diagram shows good agreement with

the mean-field prediction. While the stochastic dynamics display a characteristic

spread of trajectories, they reproduce the limit cycle behavior in an average sense.

We obtained a semi-quantitative agreement between the mean-field prediction for

time evolution with stochastic trajectories. In our numerical analysis, we used pa-

rameters corresponding to the microtubule-kinesin system. Our method is equally

applicable to other filament-MP systems, e.g., filamentous actin-myosin. The quan-

titative results presented here are amenable to direct experimental verifications in

gliding assay setups of microtubule and kinesin molecules. The parameter values

used in Fig. (5.7) correspond to kinesin extension rate 0.4µm/s, and a detachment

force 2 pN.

We used a trapping potential of strength KT = 0.3 pN/nm, which can control

in experiments [57, 122, 126]. The amplitude and frequency of oscillations of the

microtubule in the limit cycle phase shown in Fig. (5.7) correspond to 0.4µm and

0.5Hz, respectively. On the other hand, for MPs, while the frequency remains

around 0.5Hz, the amplitude of oscillation is ∼ 4 nm.

In the next chapter, we consider the semiflexibility of the filaments. We study

the statistical mechanics of a semiflexible filament driven by motor proteins assay

in two dimensions.
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Semiflexible filament in a gliding

assay

6.1 Introduction

The cytoskeleton in living cells consists of semiflexible filaments like F-actins and

microtubules, and motor proteins (MPs) [22, 48]. The MPs hydrolyse ATP to un-

dergo binding, unbinding cycles and move in a directional manner along the asso-

ciated filaments [5, 52, 53]. On cross-linked filaments of cytoskeleton, the active

chemical cycle of MPs generate mechanical stress to maintain the cell structure and

dynamics [39, 55]. The MPs drive energy flux at the smallest length scales of the

system, typical of active matter [2, 29, 54]. This breaks the detailed balance, and

the equilibrium fluctuation- dissipation relation.

The in vitro molecular motor assays are often used to derive direct physical

understanding of the active properties of filaments and MPs [17, 18, 61, 129]. The

motility assay setup with actin filaments or microtubules floating on top of an im-

mobilized MP- bed, showed fascinating dynamical behaviors, e.g., spiral formation,

collective gliding and swirling [19–21, 61, 63]. For spiral formation of microtubules

on kinesin assay [19, 61], a microtubule- specific theory has been recently devel-
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oped [62]. However, similar behavior has been observed in other active polymer

studies [130–135].

In this chapter we consider a detailed theoretical model of a two- dimensional

motility assay, and study the change in shape and size of an extensible semiflexible

polymer driven by MPs. In our model, the MPs are immobilized by attachment of

their tails to a substrate, while the head domains undergo active attachment- de-

tachment with the filament, and drive the filament by performing active extension.

The detachment and extension rates are assumed to be load dependent in a man-

ner consistent with established MP models [67, 114]. Most of the current studies

which attempt to understand the static and dynamic properties of a filament in

the presence of activity, either consider the polymers as made up active monomers

with a constant velocity in the tangential direction or introduce activity via an ac-

tive noise term [130–144]. However, two-fold effect of MPs on the conformational

and dynamical properties of a semiflexible filament are profound and therefore need

explicit consideration [106, 117, 145].

We perform extensive numerical simulations to study the polymer in motility

assay, and use phenomenological arguments to illustrate several findings. We obtain

a first order conformational transition from open chain to spiral as a function of

the MP activity, which has two main aspects: (i) the rate of extension, and (ii) the

turnover – given by the ratio of attachment- detachment rates. The transition is

characterized by the coexistence of the open and spiral phases. Obtaining the re-

sultant phase diagram is the first main contribution of this chapter. It shows a

remarkable reentrance from open chain to spiral to open chain with increasing activ-

ity. The spirals are characterized by their turning number. An approximate data-

collapse of the non- monotonic variations of the mean squared turning number with

active extension for different turnovers leads to a scaling function. This is supported

by a torque- balance argument, which also describes the phase boundary. This is

our second main contribution. The distribution function of the end- to- end sepa-

ration shows bi-stability capturing the coexistence between open and spiral states.

We use radius of gyration tensor to determine the instantaneous size, shape, and
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effective orientation of the polymer. Accompanied by the reentrance transition, the

polymer size, and shape- asymmetry show non-monotonic variations with activity.

The non- monotonic variation in size shows qualitative difference with respect to

that of polymers in active bath [132]. We study the steady state dynamics using

the two- time autocorrelation functions. The dynamics of turning number, size and

shape of the polymer depend on the conformational changes. Their autocorrela-

tions reveal double- exponential decay at phase- coexistence, corresponding to the

relaxation within a state, and slow transition between the states. The correlation

time shows non-monotonic variation with a maximum at an intermediate rate of

MP extension. This is our third main result. The autocorrelation function of the

instantaneous orientation of the polymer conformation shows an overall single time-

scale decay, and oscillations related to the rotation of the spirals at higher activity.

The corresponding correlation time decreases with MP extension rate as a power-

law.

The plan of the chapter is as follows. In Section-6.2 we present the detailed

model of the motility assay and the extensible semiflexible polymer. In Section-

6.3 we demonstrate the spiral formation, rotation and breaking with the help of

turning number. Using its probability distribution, in Section-6.4, we demonstrate

a first order phase transition from open chain to spiral with increasing activity. The

phase diagram is presented in Section-6.5. In Section-6.6 we discuss an approximate

scaling form of the turning number fluctuations. In Section-6.7 the end- to- end

distribution function, the change in polymers size, and shape is discussed. This

is followed by a discussion of the polymer dynamics in terms of autocorrelation

functions of turning number, polymer size, shape, and orientation in Section-6.8.

Finally, we conclude in Section-6.9 summarizing our main results.
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6.2 Model and simulation

6.2.1 Model

We consider an extensible semi-flexible polymer of N -beads with monomer positions

r1, r2, . . . , rN . The chain is described by both stretching and bending energy terms.

The bond vectors bi = ri+1 − ri are defined for i = 1, 2, . . . , N − 1 and are oriented

along the local tangents t̂i = bi/|bi|. The connectivity of the chain is maintained

by the stretching- energy

Es =
N−1∑

i=1

A

2r0

[
bi − r0t̂i

]2
, (6.1)

characterized by the bond- stiffness A and the equilibrium bond- length r0. The

bending rigidity κ of the semiflexible filament leads to a bending energy cost between

the consecutive tangent vectors,

Eb =
N−2∑

i=1

κ

2r0

[
t̂i+1 − t̂i

]2
. (6.2)

The self-avoidance of the filament is implemented through a short-ranged Weeks-

Chandler-Anderson repulsion between all the non-bonded pairs of beads i and j,

EWCA = 4[(σ/rij)
12 − (σ/rij)

6 + 1/4] if rij < 21/6σ

= 0, otherwise. (6.3)

Thus the full polymer model is described by the energy cost E = Es + Eb + EWCA.

The energy and length scales are set by ϵ and σ respectively. The corresponding

microscopic time scale is τ0 = σ
√
m/ϵ.

In the motility assay setup, the polymer is placed on a substrate of MPs ( Fig. (6.1) ).

The MPs are assumed to be immobilized by attachment of their tails irreversibly to

the substrate at positions ri0 = (xi
0, y

i
0) placed on a two dimensional square lattice

with a uniform density ρ. The heads of MPs can attach to the nearest bead of
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Figure 6.1: (color online) A schematic diagram of the system showing a polymer floating
on the motility assay. The tails of MPs are attached irreversibly on a square grid. The
head domains can attach to the filament, when any segment of it comes within the capture
radius. The active extension of the attached head along the filament generates force in
the opposite direction. The MP stalk is modeled as a harmonic spring.

the polymer within a capture radius rc through a diffusion limited process which is

implemented by a constant attachment-rate ωon. The stalks of the MPs are mod-

eled as elastic linkers of stiffness km. The extension ∆r of a MP in the attached

state generates an elastic force fl = −km∆r on the segment of the filament it is

attached to. This extension can be due to two processes: (i) the attached head may

be dragged by the filament, and (ii) it can move actively over the filament towards

one of its ends. The attached head moves along the bonds. Thus its instantaneous

location can be anywhere between the beads. The MP- extension generates a force

fl, which is divided between the beads forming the bond on which the MP- head is

located. This is done using the lever rule, and depends on the relative separation

of the MP- head with respect to the polymer beads. The nearer the MP is to a

specific bead, the larger is the share of the force on it. For example, attached

kinesins (dyeneins) move along the microtubule towards its positive (negative) end.

The active velocity is known to decrease with resistive load, and can be modeled

as [114, 117]

vat (ft) =
v0

1 + d0 exp(ft/fs)
, (6.4)

where ft = −fl.t̂, d0 = 0.01 and fs is the stall force. Here v0 denotes the velocity of

free MP. The actual extension ∆r, and as a result ft on different MP is different.

It depends on the time spent in the attached state, which in turn depends on the
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stochastic detachment rate

ωoff = ω0 exp(fl/fd), (6.5)

where ω0 is the bare off rate, fl = |fl| and fd sets the scale of the detachment force.

The ratio ωon : ωoff does not obey detailed balance. The net force imparted by MPs

depend on the processivity Ω(fl) = ωon/(ωon + ω0 exp(fl/fd) ).

6.2.2 Simulation

We perform molecular dynamics simulations of the polymer using beads of unit

mass m = 1, in the presence of a Langevin heat bath of isotropic friction per bead

γ = 1/τ0 keeping the temperature constant at kBT = 1.0 ϵ. We use bond- stiffness

A = 100 ϵ/σ for the N = 64 bead chain.

In equilibrium worm-like-chain, the ratio of the contour length L = (N−1)r0 to

persistence length λ = 2κ/[(d−1)kBT ], the rigidity parameter u = L/λ, determines

whether the filament behaves like a rigid rod or a flexible polymer [93, 94]. The

end-to-end distribution of worm-like-chain shows Gaussian chain behavior with a

single maximum at zero- separation at u ≈ 10, and a rigid-rod behavior with a single

peak near full extension of the chain at u ≈ 1. In the semiflexible regime of u =3

to 4, the free energy shows a characteristic double minimum corresponding to the

coexistence of both the rigid rod and flexible chain behaviors. To probe this regime,

we choose κ/r0kBT = 9.46 corresponding to u = 3.33. Unless stated otherwise, we

choose the equilibrium bond-length r0 = 1.0 σ. At this point it is important to note

that the typical size of individual MPs are three to four orders of magnitude smaller

than the typical length of polymers used in motility assay setups. Incorporating

this large length scale separation makes the numerical simulations prohibitively

expensive. We use a capture radius rc = 0.5 σ, and MP density ρ = 3.8 σ−2 in our

simulations. To avoid introduction of further energy scales, we use km = A/σ. To

maintain active forces larger than thermal fluctuations, we use fs = 2 kBT/σ, fd =
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fs. The dynamics of the active system is characterized by the dimensionless ratio

of attachment and detachment rates ωon/ω0, and a dimensionless Péclet number

Pe = v0L/Dt expressed as a ratio of convective and diffusive transport of the

filament. Using translational diffusion coefficient of polymer Dt = D/(L/r0) with

D = kBT/γ, one obtains Pe = v0L
2/Dr0.

This expression, along with the rigidity parameter u = L/λ, give the flexure

number Pe u = v0L
3(d− 1)/2κr0, which plays crucial role in determining buckling

instability, and spiral formation in active polymers [63, 131, 136]. The characteristic

time for the filament to diffuse over its contour length L is τ = L3γ/4r0kBT .

We use this as a unit of time in expressing the time-scales in simulation results.

The numerical integrations are performed using δt adjusted for numerical stability.

The presence of turnover reduces the effective active force imparted on the chain,

as MPs detach under longer extension. As a result, the smallest δt required in

these simulations is 1.6× 10−8 τ , larger than that was necessary for active polymer

simulations [131]. The results are presented here from simulations over 2 × 109

steps, discarding the first 109 steps to ensure steady state measurements.

6.3 Spiral formation, rotation and breaking

Beyond a minimum on- off ratio ωon/ω0, and activity Pe, the polymer spontaneously

starts to get into spiral structures. The nature of the spiral can be quantified in

terms of the turning number [146], ψi = (1/2π)
∑i−1

j=1[θj+1 − θj] where θj is defined

by t̂j = (cos θj, sin θj), and [θj+1−θj] gives the angle increment between consecutive

bonds. Thus turning number ψN with i = N measures the (real) number of turns

the chain takes between its two ends. For a straight chain ψN = 0, and for a

chain forming a single anticlockwise (clockwise) loop ψN = 1 (ψN = −1). Larger

values of ψN correspond to more than one turn forming the spiral. In Fig. (6.2)

we show a typical time series of ψN , along with three representative conformations

corresponding to ψN ≈ 0 and a turning number ψN ≈ ±3. In Fig. (6.3)(a), we show

the snapshots of the semiflexible polymer in the dynamics of the spiral formation.
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Figure 6.2: (color online) Time evolution of the turning number ψN at Pe = 105 and
the ratio ωon/ω0 = 1. Time t is expressed in the unit of τ . The plot shows stochastic
switching between three states, an open state with ψN ≈ 0, and two spiral states with
ψN ≈ ±3. Representative polymer configurations corresponding to the three states are
shown at three time instances indicated by arrows.

t = 0.0× 10−3 0.8× 10−3 1.6× 10−3

(a) ������ ���������

2.4× 10−3 3.0× 10−3

t = 0.0× 10−3 0.32× 10−3 0.64× 10−3

(b) ������ ��������

1.28× 10−3 2.24× 10−3

Figure 6.3: (color online) Typical configurations of the (a) formation and (b) breaking
of the spiral at Pe = 105 and the ratio ωon/ω0 = 1. Time t is expressed in the unit of τ .
The solid point indicate the head of the spiral.

In Fig. (6.3)(b), we show the snapshots of the semiflexible polymer in the dynamics

of the spiral breaking. In Fig. (6.4), we show the snapshots of the semiflexible

polymer in the dynamics of the spiral rotation.
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t = 0.0× 10−3 0.48× 10−3 0.96× 10−3

������ ��������

1.44× 10−3 1.98× 10−3

Figure 6.4: (color online) Typical configurations of the rotation of the spiral at Pe = 105

and the ratio ωon/ω0 = 1. Time t is expressed in the unit of τ . The solid point indicate
the head of the spiral.

6.4 First order phase transition : open chain to spiral

In Fig. (6.5)(a) we show the steady state probability distributions of the turn num-

ber p(ψN) at different values of Pe, corresponding to a fixed on- off ratio ωon/ω0 = 1.

At small Pe we find a unimodal distribution with the maximum located at ψN = 0

corresponding to open chains. With increasing the activity to Pe = 0.2 × 105 two

other metastable maxima appear in p(ψN) near ψN = ±1.8, positioned symmet-

rically around the central peak at ψN = 0, which remains the global maximum.

Appearance of such metastable states across a phase transition is a characteristic of

a first order transition. As we increase Pe, the heights of the maxima correspond-

ing to spiral grow. Near Pe = 0.67× 105, all the three maxima of p(ψN) becomes

equally probable, identifying the binodal point of the first order phase transition

from the open- chain to spiral. The increase in the probability of the spiral states,

characterized by the rise of height of the two non-zero ψN maxima, continue up to

Pe = 1.19×105. This indicates further (de-) stabilization of the (open) spiral state.

A remarkable non-monotonic feature is observed with further increase in Pe. For

larger Pe, the non-zero ψN - peaks corresponding to the spiral states start to reduce

in height with respect to the peak at ψN = 0. Again near Pe = 1.58×105, all three

maxima attain the same height, indicating a binodal corresponding to the reentrant

transition back from spiral to open chain state. At larger Pe, the heights of the

non-zero ψN peaks keep diminishing with increasing Pe values. Despite this non-

monotonic nature of the stability of open and spiral states, it should be noted that,

all through, the positions of the peaks at non-zero turning number ψN consistently
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Figure 6.5: (color online) (a) Probability distribution functions of turn number p(ψN )
for different Pe = P̃ e×105 where values of P̃ e are denoted in the figure legend, at a fixed
ratio ωon/ω0 = 1. The triple- maxima characterize the coexistence in transition from
open chains to spirals. The dependence of the stable (global) (red �) and metastable
(blue ✸) maxima of p(ψN ) are shown as a function of Pe at ωon/ω0 = 1 in (b), and as
a function of ωon/ω0 at Pe = 1.39 × 105 in (c). In (b), the green lines show the plot of
±(|u4|/2u6)1/2, and the grey lines show the plot of ±(u2/2u4)

1/2, where u2, u4 and u6 are
defined by Eq. (6.6).

increases to larger amplitudes of ±ψN as Pe increases. Thus, while the probability

of spirals at Pe > 1.58 × 105 gets smaller with increasing Pe, when formed, the

spirals at higher Pe consistently display higher turning numbers.

We analyzed all such probability distributions within a range of 0 ≤ Pe ≤
3.97 × 105, and attachment- detachment ratios 0.1 ≤ ωon/ω0 ≤ 20 using the loca-

tions and heights of the peak positions of p(ψN). In Fig. (6.5)(b), we show using �
(red), the ψm

N values corresponding to the stable phase, i.e., the peak position(s) of

the global maximum (maxima) in p(ψN). Points denoted by ✸ (blue) show the peak

positions corresponding to the metastable state(s), having peak heights smaller than

the global maximum. The dotted lines are guide to eye showing the variation of the

global maximum with increasing Pe, which displays the open- to predominantly

spiral- to predominantly open transition as expected from the probability distribu-

143



Chapter 6

tions. Note that the coexistence points, symmetric about the central peak (points

corresponding to ψm
N = 0) mark the familiar coexistence curves (binodal) in a first

order phase transition. The various transitions are the unique non-equilibrium fea-

tures of the motility assay set up. Similar non-equilibrium features are observed

when ψm
N s is plotted as a function of the ratio ωon/ω0 at a constant Pe (Fig. (6.5)(c)).

From the probability distribution of ψN , and using an effective equilibrium- like

approximation p(ψN) ∼ exp[−F(ψN)] we can write

F(ψN) =
1

2
u2ψ

2
N − u4ψ

4
N + u6ψ

6
N , (6.6)

apart from an additive constant. Such a fitting with Fig. (6.5)(a) allows us to obtain

the values of u2, u4 and u6 as a function of Pe and ωon/ω0 ratio. It is straightforward

to show [147] that along the first order line described by ∂F/∂ψN = 0 and F =

0, the turn number obeys the relation ψN = ±(|u4|/2u6)
1/2. This shows good

agreement with simulation results (Fig. (6.5)(b) ). Moreover, the spinodal lines,

obeying ∂F/∂ψN = 0 and ∂2F/∂ψ2
N = 0, are given by ψN = ±(u2/2u4)

1/2, and are

shown by the grey lines in Fig. (6.5)(b).

6.5 Phase diagram : reentrant transition

In Fig. (6.6), we plot the phase diagram in the ωon/ω0 - Pe plane characterizing the

open and spiral states and their stability. The symbol △ denotes the region where

the open chain is the only phase possible, with the distribution p(ψN) showing a

single maximum at ψN = 0. The regions denoted by ✷ indicates coexistence of the

stable open chain, with a metastable spiral phase. In the region denoted by � in

the phase diagram, it is the spiral state which is stable, but in coexistence with

a metastable open state. The two boundaries between the � and ✷ in Fig. (6.6)

identify the two binodal lines of the first- order transition. Along them, both the

open and the spiral states are equally probable. The presence of these two binodal

lines characterize the reentrant nature of the first order conformational transition
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Figure 6.6: (color online) Phase diagram calculated from probability distribution of
turn number p(ψN ). The data points denoted by green △ denotes a stable open chain
state, in the complete absence of spirals. The blue ✷ points denote stable open chains
in the presence of metastable spirals. The red � denotes stable spirals coexisting with
metastable open chains. The boundaries between ✷ and � denote the binodals where
open chains and spirals are equally probable. The solid line capturing one such phase
boundary is a plot of the function ωon/ω0 = α/(Pe − α) where α = 3.67 × 104 (see
Section-(6.6)).

of the polymer.

The phase diagram clearly brings out the importance of the attachment-detachment

kinetics of the MPs. At a fixed ωon/ω0, the polymer goes from a stable open chain to

stable spiral to stable open chain reentrant transition with increase in Pe. At higher

attachment-detachment ratios, ωon/ω0 > 2 for the parameters in our simulations,

the region of stable spiral states 0.4× 105 ≤ Pe ≤ 1.19× 105, is independent of the

ωon/ω0 ratio. At lower ωon/ω0, the region where the spiral state is the stable state

of the polymer appears at progressively larger Pe values. Also the single maxima

region, corresponding to only an open chain conformation, persists for higher values

of Pe at low ωon/ω0.

Active polymers showed formation of spirals at activity larger than the onset

of buckling instability [131]. However, this did not show the re-entrance behavior

we find. Our detailed modeling of the MP- bed allowed us to clearly characterize

the impact of the MP turnover, revealing the dependence on the ωon/ω0 ratio. This

remained outside the scope of the active polymer model.

145



Chapter 6

Figure 6.7: (color online) (a) The steady state turning number fluctuation ⟨ψ2
N ⟩ as a

function of Pe at different values of ωon/ω0 ratios denoted in the figure legend. (b) Ap-
proximate data collapse of different plots in (a) by using scale factors A, B. Inset: The
dependence of A and B on q = ωon/ω0. The solid line Ωf = 1.42 q/(0.52 + q) shows a
fit to the data for A. The dotted line shows a fit (0.37 + q)/1.41 q to the data for B
in the regime q > 0.3. The dash- dotted line is a plot of 1/Ωf . Comparison of time
series of ψN for bond lengths r0 = 1.0σ (red), 0.75σ (blue) and 0.5σ (green) are shown at
Pe = 3.97 × 104 (c) and Pe = 3.97 × 105 (d). Time t is expressed in the unit of τ . The
data for r0 = 0.75σ and 0.5σ are shifted upwards by 8 and 16 for better visibility. (e)
Kurtosis KψN

of turning number ψN plotted at ωon/ω0 = 0.2, 1.0, 20 with data shown
by the same symbols as in (a). The open ✷ and � denote data at ωon/ω0 = 1.0 for
r0 = 0.75σ and 0.5σ respectively.

6.6 Turn number fluctuations

In this section we consider the first two moments of the p(ψN) distributions. This

is due to the fact that, with respect to the full distributions, moments are easier

quantities to determine from experiments. The chiral symmetry in the system

p(−ψN) = p(ψN) ensures that, all through, ⟨ψN⟩ = 0. The quantitative measure

of the effective turn number is given by the root- mean square fluctuation ⟨ψ2
N⟩1/2.

Fig. (6.7)(a) shows the non-monotonic variation of ⟨ψ2
N⟩ with Pe at fixed ωon/ω0

ratios, corresponding to the reentrant transition. Re-scaling of Pe and ⟨ψ2
N⟩ leads to

an approximate data collapse as shown in Fig. (6.7)(b). We can extract a functional
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dependence of the scale factors A, B on the ratio q = ωon/ω0 as A ≈ Ωf (q) and

B ≈ 1/Ωf (q) (see inset of Fig. (6.7)(b)). Ωf (q) has the form of a bare processivity,

Ω(fl = 0) = ωon/(ωon + ω0) = q/(1 + q). The data- collapse suggests a functional

dependence

⟨ψ2
N(q, Pe)⟩ ≈ Ωf (q)G[Ωf (q)Pe]. (6.7)

A spiral with radius R has a turn number ψN = L/2πR. The shape can be

maintained via a torque balance FR2 = κ/R, where F denotes the MP force per

unit length. This force depends fl, the force exerted due to active extension of MPs,

the linear density of MPs √
ρ, and their processivity (fl). The mean of the active

force fl is denoted here by fa ≈ γv0. Thus the net active force per unit length

F :=
√
ρfa(fa). This leads to the following activity dependence of turning number

ψ2
N ∼ G1((fa), fa). (6.8)

Noting that Pe ∼ fa, Eq. (6.8) is related to but cannot fully capture the scaling

form in Eq. (6.7). The reason lies in the fact that the polymer switches between

the spiral and open state, and ⟨ψ2
N⟩ is averaged over the probability distribution

spanning both the states.

The onset of spiral requires ψ2
N > 1, i.e., F > Fc = κ(2π/L)3. Thus the phase

boundary denoting this is given by F := fa(fa) = Fc. In the limit of load- in-

dependent detachment rate, with fa ∼ Pe, the equality fa(fa) = Fc leads to a

dimensionless form qPe/(1+q) = α, where q = ωon/ω0, and α denotes a dimension-

less constant proportional to Fc. This can be simplified to the hyperbolic relation

ωon/ω0 = α/(Pe− α). (6.9)

In the phase diagram Fig. (6.6), the solid line is a plot of this function with α =

3.67 × 104, and approximately captures the phase boundary of the onset of spiral

phase.
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As it has been pointed out earlier [131, 140], the modulation of potential en-

ergy along the chain due to WCA repulsion from polymer beads costs energy to

slide chain segments past each other. The resultant increase in sliding friction can

increase the lifetime of spirals. To examine this we consider chains of the same

contour length L but smaller bond lengths r0 = 0.75 σ and 0.5 σ having smoother

potential profiles along the chain. In Fig. (6.7)(c) and (d) we show a comparison

between their time series of turning number ψN at two activities, Pe = 3.97× 104,

3.97 × 105, keeping ωon/ω0 = 1. We find formation of spirals in all the cases. As

expected, the life-time of spirals corresponding to all the different phases decreases

with reduction of r0/σ, smoothening the polymer. For each r0/σ, however, the

time-scale shows non-monotonic variation with Pe (Section-6.8.3). A quantitative

analysis of the time-scales are presented in Fig. (6.15) of Section-6.8.3.

In Fig. (6.7)(e) we show variation of kurtosis KψN
= [⟨ψ4

N⟩/3⟨ψ2
N⟩2− 1] with Pe

for three different r0/σ ratios calculated at ωon/ω0 = 1. It also shows KψN
(Pe) for

ωon/ω0 = 0.2, 20.0 using the chain with bond length r0 = 1.0 σ. To reduce statistical

uncertainties we calculated kurtosis over several initial conditions such that the

distribution of ψN gets symmetric and restricting analysis to the spiral states [131].

At small Pe we find KψN
= 0, consistent with the Gaussian distribution. As

the spirals start to appear ⟨ψ4
N⟩ increases, increasing KψN

. At higher Pe, as the

spirals stabilize, the second cumulant ⟨ψ2
N⟩ start to dominate reducing KψN

from a

maximum to eventually KψN
reach a minimum. Finally at further higher Pe, the

kurtosis increases again corresponding to the re-entrance.

The kurtosis KψN
calculated for three different values of r0/σ = 1.0, 0.75, 0.5 at

ωon/ω0 = 1 in Fig. (6.7)(e) display similar non-monotonic behavior, but the peak of

the curves shift towards larger Pe for smaller r0/σ. For example, the peak position

of KψN
shifts from Pe = 4.4 × 104 at r0/σ = 1.0 to Pe = 6.0 × 104 at r0/σ = 0.75

and to Pe = 7.9 × 104 at r0/σ = 0.5. Such a shift can be understood by noticing

that the reduction in r0/σ increases the bending rigidity κ of the filament. As has

been pointed out before Eq. (6.9), the active force Fc needed for the onset of spiral

increases linearly with κ. Thus spiral formation at smaller r0/σ requires higher Pe.
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1

6.7 Size and shape

Associated with the active open to spiral transition, the polymer undergoes sig-

nificant change in its size and shape. In this section we clearly demonstrate these

transformations with the help of (i) the end- to- end separation, and (ii) the radius

of gyration tensor.

6.7.1 End- to- end separation

In Fig. (6.8)(a) we show the probability distribution of the scaled end- to- end

separation r̃e = re/⟨L⟩ of the polymer for different Pe at a fixed ωon/ω0, where

⟨L⟩ denotes the mean contour length. The distribution function p(r̃e) is normalized

to
∫ 1

0
dr̃e 2πr̃e p(r̃e) = 1. At Pe = 0, it shows a single maximum at r̃ ≈ 0.8

corresponding to rigid- rod like configurations. This points to a relatively large

effective bending rigidity of the filament [106]. Note that Pe = 0 does not imply an

equilibrium passive polymer, because of the active attachment- detachment of the

MPs with ωon/ω0 ̸= 0. With increasing Pe, the distribution changes qualitatively.

At Pe = 0.2 × 105, a new maximum appears near r̃ ≈ 0.15. This bimodality

corresponds to coexistence of rod-like shapes with folded polymers, a behaviour

that appears even before the chain starts to form spirals. At further higher activity,

Pe ≥ 0.4× 105, as the probability of spiral- state increases, the small r̃e maximum

shifts to smaller values, and their corresponding probability increases up to Pe =

1.19 × 105. At even higher Pe, the spiral state starts to become less stable, as

has been discussed in Section-6.4. Associated with that, the height of the small r̃e
maximum in p(r̃e) decreases. This non-monotonic behaviour is clearly observable

in Fig. (6.8)(a). The peak at small r̃e increases with increasing activity in the range
1The availability of more attachment points of MPs for a filament with smaller r0/σ, within

our model, could increase the imparted active force on the filament. However, this effect would
shift the KψN

graphs to smaller Pe, unlike what we observe in Fig. (6.7)(e).
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Figure 6.8: (color online) (a) End-to-end distribution functions 2πp(r̃e) for Pe = P̃ e×
105 with P̃ e values shown in the figure legend, at a fixed ωon/ω0 = 1. (b) Mean squared
end- to- end separation ⟨r̃2e⟩ as a function of Pe for ωon/ω0 = 0.5 (▽), 1 (△), 5 (✷), 10 (✸),
20 (�). Error bars are smaller than the symbol size. The lines through data are guides
to eye.

of Pe× 10−5 = 0.2 to 1. At higher activity, Pe× 10−5 = 0.99, 1.98, 3.57, this peak-

height decreases.

In Fig. (6.8)(b), we show the non-monotonic variation of the second moment

of the end- to- end distribution ⟨r̃2e⟩ with Pe, for different ωon/ω0. For all ωon/ω0,

⟨r̃2e⟩ initially decreases from the value at Pe = 0 as the polymer starts folding and

getting into predominantly spiral states. As Pe is increased further, ⟨r̃2e⟩ starts

increasing since the stability of spiral states decrease. At small ωon/ω0, ⟨r̃2e⟩ shows

eventual saturation with Pe. However, for larger ωon/ω0, the curve shows a further

non monotonic behavior with an asymptotic increase in ⟨r̃2e⟩ at higher values of

Pe > 2.58×105. Note that a non-monotonic variation of ⟨r̃2e⟩ with Pe was observed

earlier in polymers in active bath [132]. The main difference of that result with our

model is, for ωon/ω0 ≥ 5 we find two minima in the ⟨r̃2e⟩ versus Pe curve instead of

the single minimum in Ref. [132], before the asymptotic increase. The size variation

is associated with the persistence length of the filament discussed in the next section.
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Figure 6.9: (color online) Persistence length. (a) Tangent-tangent correlation function
for Pe×10−5 = 0(✷), 0.99(�), 1.98(△) and ωon/ω0 = 1. The points denote the simulation
results, and the solid lines represent the fitting functions exp(−s̃/l̃p). (b) Variation of the
effective persistence length l̃p with Pe at ωon/ω0 = 0.5 (▽), 1 (△), 5 (✷), 10 (✸), 20 (�).
The lines through data are guides to eye. At equilibrium, the chain has persistence length
l̃p ≈ 0.3, close to the values at Pe = 0.

6.7.2 Effective persistence length

The effective persistence length can be quantified in terms of the correlation function

between local tangents ⟨t̂(s)·t̂(0)⟩ at contour positions separated by s. For the worm-

like- chain the correlation shows a single- exponential decay ⟨t̂(s)·t̂(0)⟩ = exp(−s/λ)

defining the persistence length λ. The semiflexible polymer under the motility

assay drive shows non- trivial tangent correlations (Fig. (6.9)(a) ). The oscillations

in the decaying correlation at higher Pe is associated with the formation of the

spiral configurations. However, the initial decay in correlation can be fitted to a

single exponential form exp(−s/lp) to capture the effective persistence length lp. In

Fig. (6.9)(a) the contour lengths s are expressed as s̃ = s/⟨L⟩, where ⟨L⟩ is the

mean chain- length. The scaled effective persistence lengths l̃p = lp/⟨L⟩ are plotted

as a function of Pe, at fixed ωon/ω0 ratios in Fig. (6.9)(b). The variation of l̃p shows

non-monotonic change with Pe, and follows the variation of the mean squared end-

to- end separation ⟨r̃2e⟩ plotted in Fig. (6.8)(b).
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6.7.3 Radius of gyration tensor

The size and shape of the polymer configurations can be extracted from analyzing

the radius of gyration matrix

S =
1

N




∑
i(xi − xcm)

2
∑

i(xi − xcm)(yi − ycm)
∑

i(xi − xcm)(yi − ycm)
∑

i(yi − ycm)
2


 (6.10)

where (xi, yi) denotes the position vector of the i-th bead, and (xcm, ycm) denotes

the center of mass coordinate of the instantaneous polymer configuration. The

two eigenvalues λ̃+ and λ̃− of S/⟨L⟩2 describe the instantaneous configuration of

the polymer as an elliptical shape, with λ̃+ and λ̃− denoting the square of lengths

along the semi-major and semi-minor axes whose orientations are determined by

the eigenvectors.

Here we show the probability distributions of the eigenvalues of the radius of

gyration matrix, p(λ±). In Fig. (6.10)(a), (b) we show these distribution functions
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Figure 6.10: (color online) Probability distributions of the eignevalues (a) λ̃+, and
(b) λ̃−, (c) size R̃2

g, and (d) shape R̃2
s are shown. All the distribution functions are obtained

at ωon/ω0 = 1, and the different graphs in (a)–(d) correspond to the Pe = P̃ e× 105 with
P̃ e- values indicated in the legend of (a).
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Figure 6.11: (color online) Radius of Gyration. Fig. (a), (b) shows the variation of size
˜⟨R2
g⟩ and shape ˜⟨R2

s⟩ with standard error as a function of Pe at different ωon/ω0 = 0.5
(brown ▽), 1 (pink △) 5 (green ✷), 10 (blue ✸), 20 (red �) respectively.

evaluated for various Pe and a fixed turnover ωon/ω0 = 1. Clearly, at the onset

of instability towards formation of spirals both the distributions p(λ̃±) start to

show emergence of a very sharp delta- function like peak. This corresponds to a

typical size and shape of the configurations forming spiral. This feature is further

quantified in the distribution functions of the relative size and shape variables R̃2
g

and R̃2
s shown in Fig. (6.10)(c), (d).

A measure of effective size of the polymer is given by R2
g = λ̃+ + λ̃−. The

difference between the eigenvalues denotes its shape R2
s = λ̃+ − λ̃−, with R2

s = 0

for a symmetric circular shape. In Fig. (6.11) we show variations of the scaled size

⟨R̃2
g⟩ = ⟨R2

g⟩/⟨R2
g⟩Pe=0 and shape ⟨R̃2

s⟩ = ⟨R2
s⟩/⟨R2

s⟩Pe=0 with Pe. As expected, the

variation of ⟨R̃2
g⟩ follows the same non-monotonic variation as the other measure of

size ⟨r̃2e⟩ shown in Fig. (6.8). Remarkably, the shape of the polymer ⟨R̃2
s⟩ follows

the same qualitative dependence on Pe at all ωon/ω0 ratios.

6.8 Dynamics

Associated with the re- entrant phase transition, the conformational dynamics dis-

plays a non-monotonic variation of the characteristic time- scales with MP activity.

In this section, we study the two- time autocorrelation functions corresponding to

153



Chapter 6

Figure 6.12: (color online) Two time autocorrelation function CψN
(t) =

⟨ψN (t)ψN (0)⟩/⟨ψ2
N (0)⟩ evaluated at different Pe = P̃ e×105 with P̃ e shown in the figure-

legend keeping the on- off ratio ωon/ω0 = 1 constant. Time t is expressed in the unit of
τ .

the turning number, the radius of gyration, and the polymer shape as defined above.

The overall orientation, described by the eigenvector corresponding to the larger

eigenvalue of the radius of gyration tensor, does not involve conformational relax-

ation. As a result, its dynamics gets faster monotonically with increasing activity.

6.8.1 Dynamics of turning number

In Fig. (6.12) we show the two- time autocorrelation function of the turning number,

CψN
(t) = ⟨ψN(t)ψN(0)⟩/⟨ψ2

N(0)⟩ at different Pe values keeping the ratio ωon/ω0 = 1

constant. In using this definition it is noted that ⟨ψN(t)⟩ = 0 by symmetry, thus

the fluctuation δψN = ψN . For Pe ≤ 0.2 × 105, the chain stays in the open state

corresponding to the unimodal distribution in p(ψN) with the maximum at ψN = 0.

The stochastic relaxation within this state gives rise to the single- exponential decay

observed in Fig. (6.12). At the phase coexistence, a new mechanism corresponding

to the switching between the open and spiral states can lead to a crossover of the

correlation to a second exponential decay. In Fig. (6.12) we observe such a double

exponential for Pe ≥ 0.4 × 105. The crossover between the two exponentials
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gets imperceptibly shallow between Pe = 105 and 2 × 105, as the overall faster

dynamics due to larger Pe, makes the switching between states easier. As we

increase Pe further, the increasing number of turns of the polymer increases the

distance between the open and spiral peaks in the space of ψN . Switching between

states becomes prohibitively expensive which makes the crossovers sharper again.

6.8.2 Dynamics of size, shape, and orientation

Figure 6.13: (color online) Two- time correlation functions of (a) R2
g, and (b) R2

s at
various Pe = P̃ e× 105 with P̃ e-values indicated in the legend, keeping ωon/ω0 = 1 fixed.
Time t is expressed in the unit of τ . The points are same as in Fig. (6.12)

The dynamics of the size, shape, and overall orientation of the polymer can

be determined by analyzing the time- series of the eigenvalues of the radius of

gyration tensor, and the eigen- vector û corresponding to the larger eigenvalue

λ+. We use the correlation functions CR2
g
(t) = ⟨δR2

g(t)δR
2
g(0)⟩/⟨δR4

g⟩, CR2
s
(t) =

⟨δR2
s(t)δR

2
s(0)⟩/⟨δR4

s⟩, and Cû(t) = ⟨û(t) · û(0)⟩. The fluctuations δR2
g,s(t) =

R2
g,s(t) − ⟨R2

g,s(t)⟩. The correlation functions are plotted in Fig. (6.13). The size

and shape correlations display double- exponential decay at Pe ≥ 0.4 × 105, as in

the turning number correlation function in Fig. (6.12). This is because of the close
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relation between the size, shape and the turning number, all of which depend on

the polymer conformation. However, the dynamics of the overall orientation of the

Figure 6.14: (color online) Two- time correlation functions of eigen- vector û at various
Pe = P̃ e× 105 with P̃ e-values indicated in the legend, keeping ωon/ω0 = 1 fixed. Time t
is expressed in the unit of τ . The points are same as in Fig. (6.12)

polymer captured by û, is not related to internal structural relaxation. Thus it

shows single exponential decay of the correlation, describing an orientational diffu-

sion at Pe ≤ 0.2× 105. Once the spirals are formed they start to rotate under the

active drive. As a result, the orientation û also rotates. This is captured by the

oscillations in Cû(t) at Pe ≳ 0.4× 105. As can be easily seen from Fig. (6.14), the

frequency of rotation increases and the amplitude of oscillation in Cû(t) decreases

with increasing Pe.

6.8.3 Time scales

The correlation time τc is the time scale at which the autocorrelation function

touches zero for the first time. In Fig. (6.15)(a) we show the dependence of τc on Pe

keeping ωon/ω0 = 1. τc corresponding to the orientational correlation function Cû(t)

decreases monotonically with increasing Pe. This can be understood by noticing

that the overall orientational dynamics does not involve internal conformational
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relaxation of the polymer. It is thus controlled by the active time scale D/v20 ∼
1/Pe2, and decreases monotonically with increasing Pe (Fig. (6.15)(a) ).

On the other hand, the value of τc corresponding to CψN
(t), CR2

g
(t) and CR2

s
(t) is

controlled by two competing effects. The enhanced activity at higher Pe is expected

to make the dynamics faster. On the other hand, as the system undergoes phase

transition, the slow switching between states can slowdown the overall dynamics.

This competition leads to a non-monotonic variation of τc with a maximum reached

at Pe = 105 (Fig. (6.15)(a) ). The maximum in τc is associated with the dominance

of spirals in the dynamics. The correlation time τc for a smoothened chain of

r0/σ = 0.75 shows a similar non-monotonic variation (Appendix-6.10.2), however,

with smaller τc values than the chain with r0/σ = 1.0, due to a reduced sliding

friction.

At this point, it is instructive to focus on τc corresponding to CψN
(t). Note that

at Pe = 105, where the maximum of τc = 1.3 × 105 τ is observed (Fig. (6.15)(a) ),

the simulation results for the mean dwell times at the open and spiral states are

τo = 1.3 × 104 τ and τs = 2.5 × 104 τ , respectively. Using an assumption of a

dichotomous Markov process, they lead to an estimate of the correlation time [148]

τe = τoτs/(τo + τs) ≈ 104 τ < τc = 1.3 × 105 τ . Such a difference is not unexpected

as the actual dynamics is not really a dichotomous process, and involves other

mechanisms, e.g, a gradual transition between the open and spiral states.

In the following we attempt to obtain estimates of τo and τs using a relaxation

dynamics corresponding to the effective free energy F(ψN) in Eq. (6.6). For nota-

tional simplicity, we replace ψN by ψ in the rest of this section. The non-conserved

dynamics is given by [147]

∂ψ/∂t = −M [∂F/∂ψ] +
√

2kBTeM Λ(t), (6.11)

where Te plays the role of an effective temperature, M a mobility and Λ(t) is a

univariate and uncorrelated Gaussian random noise. The triple- minima of the

free energy are at ψ = 0 and ψm = ±(u4/3u6)
1/2

[
1 + (1− 3u2u6/2u

2
4)

1/2
]1/2

,
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Figure 6.15: (color online) (a) Variation of correlation time τc (in the unit of τ) with
Pe at ωon/ω0 = 1, obtained for ψN , R2

g, R2
s, and û. The brown solid line denotes the

scaling form 1/Pe2. (b) Time scales calculated at ωon/ω0 = 1 using the expressions from
the approximate non-conserved dynamics Eq. (6.11).

while the double maxima are at ψM = ±(u4/3u6)
1/2

[
1− (1− 3u2u6/2u

2
4)

1/2
]1/2

.

Disregarding the mobility M in the absence of an independent measure, the re-

laxation time scales at the minima of F , are given by [∂2F/∂ψ2]−1
ψ=0,ψm

. The

relaxation around ψ = 0 leads to the inverse time-scale τ−1
1 ∼ ω1 = u2, and

that around ψ = ψm gives τ−1
2 ∼ ω2 = u2 − (4u2

4/u6)
[
1 + (1− 3u2u6/2u

2
4)

1/2
]
+

(30u2
4/9u6)

[
1 + (1− 3u2u6/2u

2
4)

1/2
]2

. The expressions for τ1 and τ2 at ωon/ω0 = 1

are plotted in Fig. (6.15)(b). Further, we calculate the Kramer’s escape times [148]

for barrier crossing: τ3 from ψ = 0, and τ4 from ψ = ψm. These are τ3 ∼
(ω1|ωM |)−1 exp[F(ψM)− F(0)], and τ4 ∼ (ω2|ωM |)−1 exp[F(ψM)− F(ψm)], where

ωM = u2 − (4u2
4/u6)

[
1− (1− 3u2u6/2u

2
4)

1/2
]

+(30u2
4/9u6)

[
1− (1− 3u2u6/2u

2
4)

1/2
]2

(6.12)

(see Fig. (6.15)(b) ). It is interesting to note that, among these time scales,

only τ4, the time- scale determining the rate of exiting the spiral state, has a non-

monotonic variation with Pe, and dominates the overall behavior. The above

analysis allows us to express the two effective dwell times as τo = (τ1 + τ3) and

τs = (τ2 + τ4). The estimate τe = τoτs/(τo + τs) is plotted in Fig. (6.15)(b) with a
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multiplicative shift by 10 for better visibility. This shows a non-monotonic variation,

with a small maximum at an intermediate Pe, a behavior that is qualitatively

similar to the dependence of correlation times corresponding to ψN , R2
g and R2

s

with Pe (Fig. (6.15)(a) ).

The main caveat to the above analysis is Eq. (6.11) obeys the equilibrium

fluctuation- dissipation relation, and is not strictly valid as a description for active

systems. Further, even within an effective equilibrium interpretation, the Kramer’s

theory of barrier crossing is subject to modification when interpreted for transition

rates between multiple minima of a free energy profile.

6.9 Conclusions

We considered a detailed model of motility assay consisting of an extensible semi-

flexible filament driven by motor proteins (MP) immobilized on a substrate. The

numerical simulations showed a reentrant first order transition from open chain to

spirals with changing activity. This transition is characterized by the presence of

metastable maxima in the probability distribution of turning number. We obtained

the phase- diagram in the Pe -ωon/ω0 plane, which clearly brings out the impor-

tance of attachment- detachment kinematics of the MPs. At a constant ωon/ω0, the

polymer shows reentrance transition from open chain to spiral to open chain with

increasing Pe. With lowering of ωon/ω0, the phase boundary shifts progressively to

higher Pe, following a hyperbolic relation derived from a local torque balance.

The reentrant transition is associated with non-monotonic variations of the poly-

mer size, shape and fluctuations in turning number ⟨ψ2
N⟩ with Pe. The data collapse

of the ⟨ψ2
N⟩ versus Pe curves at different ωon/ω0 led to a scaling relation, which could

approximately be captured by the torque balance argument that describes the phase

boundary. The coexistence of open chain and spirals is preceded by a coexistence

of open and folded chains captured by the bimodality in the distribution of end- to-

end separation.
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Our detailed analysis of the dynamics showed a double- exponential decay in

the autocorrelation function of size, shape and turning number. The corresponding

correlation times showed a non-monotonic variation with Pe, with a maximum due

to the dominance of spirals. We developed an approximate description of the cor-

relation time in terms of a dichotomous process between the open and spiral states.

Using an effective free energy description of the phase transition and non-conserved

relaxation dynamics, we obtained expressions for the dwell times in the two states,

giving an estimate of the correlation time. This showed a non-monotonic variation

with Pe, albeit with relatively small variations. The two-time autocorrelation of

the polymer orientation, on the other hand, showed a single exponential decay, with

characteristic oscillations associated with the rotation of spirals. The orientational

dynamics does not depend on the conformational relaxation, and the corresponding

correlation time decreases with activity as 1/Pe2.

Our detailed modeling of MPs allowed us to explicitly identify dependence of

the polymer properties on both the active velocity of MPs v0, and the attachment-

detachment kinematics fixed by the ratio ωon/ω0. Together, they characterize the

MP activity and depend on the ambient ATP concentration. Our predictions are

amenable to direct experimental verifications in in vitro motility assays. For exam-

ple, we can estimate the correlation time for turning number and polymer extension

of a filament driven by motor proteins. The viscosity in the cell is around 100 times

that of water ηw = 0.001 pN-s/µm2 [22]. Assuming a similar viscosity in the motil-

ity assay, one gets η = 100 ηw = 0.1 pN-s/µm2. The corresponding viscous damping

over a bond-length σ is γ = 3πησ. The activity of MPs can be changed by chang-

ing the ambient ATP concentration. For example, for kinesins, the active velocity

v0 varies from 0.01µm/s to 1µm/s, as the ATP concentration is increased from

1µM to 1mM [114]. This corresponds to Pe = γv0L
2/kBTσ = 3πηv0L

2/kBT . At

room temperature kBT = 4.2×10−3pN-µm. A filament of length 10µm experiences

Pe ≈ 2×104. Using the unit of time τ = γL3/4σkBT = 3πηL3/4kBT ≈ 15.6 hours,

the estimated correlation time for turning number, radius of gyration and end-to-

end separation of the filament ∼ 0.1 τ translates to about 1.5 hours. Our qualitative
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predictions for transitions between open chain to spiral, and the non-monotonic vari-

ations of the polymer size and shape with changing v0 can be tested by controlling

ATP concentration in the motility assays.

In the next chapter, we approach the cytoskeletal filaments and motor proteins

using active hydrodynamics.

6.10 Appendix

6.10.1 Equilibrium persistence
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Figure 6.16: (color online) Increase in equilibrium persistence length due to reduction
of bond length r0 with respect to the WCA length scale σ. Tangent-tangent correlation
functions ⟨t̂(s̃) · t̂(0)⟩ as a function of s̃ = s/L are shown at three values of r0/σ =
1, 0.75, 0.5. The lines denote the exponential decay of correlation as exp(−s̃/l̃p), with
corresponding persistence length l̃p denoted in the figure legend. Plots for r0/σ = 0.75, 0.5
are shifted upwards by 0.2 and 0.4 for better visibility.

The presence of WCA repulsion between non-bonded beads changes the equi-

librium properties of the chain with respect to an ideal semiflexible polymer. At

short length scale it increases the effective persistence length. This can be seen

from Fig. (6.16), where we plotted the tangent-tangent correlation ⟨t̂(s̃) · t̂(0)⟩ with

s̃ = s/L denoting relative contour-wise separation between bonds. Smoothening

of the potential profile along the chain, reducing bond length r0 with respect to

the WCA size σ, leads to enhanced repulsion between neighboring bonds. This

adds to the energy cost to transverse fluctuations, thereby increasing the effective
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Figure 6.17: (color online) Two time correlation functions of turning number CψN
(t) for

a smoothened polymer with r0/σ = 0.75 calculated at ωon/ω0 = 1 and various activity
Pe = P̃ e × 105 with P̃ e-values denoted in the figure legend. The inset shows a non-
monotonic variation of the corresponding correlation times with Pe.

persistence length l̃p defined as ⟨t̂(s̃) · t̂(0)⟩ ≈ exp(−s̃/l̃p). The increase in l̃p with

r0/σ is shown in Fig. (6.16). In fact, for longer chains, at large contour separations

with respect to the persistence length, the effect of self-avoidance dominates over

bending rigidity. It leads to the Flory scaling ⟨r2(s)⟩ ∼ s2ν , which corresponds to

a power-law decay in the correlation ⟨t̂(s) · t̂(0)⟩ ∼ s−(2−2ν) at long contour separa-

tions. In an intermediate s̃, the correlation function crosses over from exponential

to power-law decay.

6.10.2 Correlation time in smoothened polymer

Here we compute the correlation function of turning number CψN
(t) = ⟨ψN(t)ψN(0)⟩/

⟨ψ2
N(0)⟩ for the smoothened chain with r0/σ = 0.75 (Fig. (6.17)) at different values

of Pe keeping the attachment- detachment ratio ωon/ω0 = 1 fixed. To keep the

chain length unchanged with respect to the chain with r0/σ = 1.0, we use N = 85

beads. The correlation times τc are determined by identifying where CψN
(t) touches

zero. The plot of correlation time in the inset of Fig. (6.17) shows a non-monotonic

variation similar to Fig. (6.15)(a), while the actual values of τc remains smaller than

the chain with r0/σ = 1.0.
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Pattern formation in active fluids:

uniform and stress- dependent

turnover

7.1 Introduction

The cell cortex is an actin and myosin rich layer of cytoplasm on the inner face of

cell membrane regulating the cell behavior. In most eukaryotic cells it consists of a

network of cross-linked filamentous actin (F-actin), myosin II mini-filaments, actin

binding proteins, membrane anchors, and other regulatory proteins [48]. It gen-

erates active mechanical stress forming self-organized patterns that govern crucial

mechanical and dynamical properties of animal cells [39, 70]. It was recognized early

on that changes in morphology is determined by the coupling between chemical and

mechanical states in cells and tissues [73]. The generation of active mechanical forces

utilizing ATP and associated active advection can lead to spatial pattern formation

in cells [23]. Such pattern formation, spontaneous oscillation, pulsation, propaga-

tion of stress waves were observed and studied in several contexts [57, 75–78]. The

changing morphology of cells and tissues utilize regulation of active force generation

and transmission [71, 72]. Actomyosin pulsations, waves, and wavy protrusions of
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cell membranes are found in migrating cells [149–153].

In the actomyosin cortex, F-actin network undergoes active contraction due

to cross-linked myosins [78, 150, 154]. Such contraction can generate active flow.

Depending on the local state, myosins can detach from the actin network relieving

the stress build up. In the current chapter, we consider a coarse-grained theory

to study the resultant pattern formation and dynamics. We develop a framework

where we consider the fraction of the system in which myosins actively contract

the actomyosin as the active component. The other regions where myosins are

detached from F-actins, the actomyosin is considered to be a passive component.

As a whole, we consider the actomyosin as a two component fluid with active and

passive components undergoing turnover between them. Over a short time scale,

the actomyosin behaves like an elastomeric mesh. However, over time-scales longer

than the network reorganization time, attachment-detachment of cross-linkers can

fluidize the actomyosin complex. We consider the actomyosin as an active fluid with

turnover between its effective passive and active components. For simplicity, we use

an isotropic active fluid model [23, 74]. In the simplest picture, the turnover rates

can be assumed to be uniform. In this chapter, we also consider a possible stress-

dependent turnover. The possibility of strain-rate dependent turnover is considered

separately in the following chapter.

The chapter is organized as follows. In Section-7.2, we present the model and

governing equations for the two-component active fluids with turnover. In Section-

7.3, we demonstrate the linear stability analysis of governing equations. We identify

the different phases allowed within the linear stability analysis. In Section-7.4, we

describe the results for uniform turnover rates. In Section-7.5, we discuss the stress-

dependent turnover. Finally, we conclude the chapter in Section-7.6.
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Figure 7.1: (Color online) Schematic representation of actomyosin complex: Bound
state and unbound state. Bound state : Myosin II attached F-actin and Unbound state
: Myosin II and F-actin in detached state. The diagram also indicates myosin subunits,
and globular actins (G-actin).

7.2 Hydrodynamic description of model

In this section we describe the actomyosin layer as an active viscous fluid. We build

up a hydrodynamic description of the active fluid with turnover between its com-

ponents. We consider a minimal phenomenological description. The main elements

of the actomyosin complex is shown in the schematic diagram of Fig. (7.1). It con-

sists of a cross-linked F-actin network and myosin minifilaments which can bind

to this network. The main elements of the theory are: (a) The actomyosin com-

plex consisting of myosin-II mini-filaments attached to the actin network considered

as bound or active fraction of actomyosin. (b) The detached actomyosin complex

which is consists of myosin-II mini-filaments detached from actin-network, G-actin

monomers, myosin subunits. This is considered passive not able to generate the

contractile stress. The actomyosin network is immersed in a highly viscous cytosol

and undergo dynamics on a dissipative substrate. A hydrodynamic force balance

in the over-damped limit gives the estimate of flow.

A perpendicular projection of the thin actomyosin layer along a cell-membrane

can be described as a quasi-one dimensional system [23]. We consider a two compo-

nent fluid with bound and unbound actomyosin concentrations Cb(x, t) and Cu(x, t)

undergoing drift, diffusion and turnover following

∂tCb = −∂x(v Cb) +Db∂
2
xCb − ωoff Cb + ωon Cu, (7.1)
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∂tCu = −∂x(v Cu) +Du∂
2
xCu + ωoff Cb − ωon Cu. (7.2)

In the above equations Db,u denotes the diffusivities of the bound and unbound)

fractions. In the last two terms ωoff, on describe the turnover. The drift current

v(x, t) is governed by the force balance relation

η∂2
xv − ∂xP + ∂xσa = γv. (7.3)

Note that within the one-dimensionally projected description the fluid behaves as

compressible, as it can flow out in the plane parallel to the membrane. Thus

η describes that effective bulk viscosity. The passive stress of the fluid can be

described in terms of the pressure P . The last term in the above equation, σa

denotes the active stress. The dynamics is considered to take place in the presence

of a friction due to the membrane described by the frictional drag γ.

The pressure due to the passive unbound fraction Cu(x, t) can be described as

P = ξpf(Cu). (7.4)

Assumption of the ideal gas law requires ξp = kBT and f(Cu) = Cu. The active

stress arises from the force exerted by attached myosins [37]. Assuming isotropy,

one can express the active stress as

σa = ξa(∆µ)0f(Cb), (7.5)

where, ξa is the strength of activity and (∆µ)0 represents the change in chemical

potential due to the hydrolysis of adenosine-tri-phosphate (ATP). Here ξa > 0 (< 0)

describes a contractile (extensile) stress generation. Since an active contractile

stress arises due to the bound myosin mini-filaments [23, 155–159], the stress is

assumed to be function of the bound actomyosin concentration. The active stress

saturates at large enough concentrations [160]. Thus, we consider a hyperbolic

function f(Cb) = Cb/(1 + Cb).
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The turnover between the active and passive fraction consists of attachment-

detachment events of individual molecular motors. The detachment rate of individ-

ual motor proteins are known depend on the load force acting on them [67]. In the

coarse-grained theory the turnover rates may depend on the local stress σ(x, t) or

strain-rate ϵ̇ = ∂xv(x, t). We consider a diffusion limited attachment described by

a constant ωon, and a Hill form for ωoff = ω0 exp(σ/σ0) or ωoff = ω0 exp(ϵ̇/ν).

7.3 Dimensionless equations and linear stability anal-

ysis

In this section we non- dimensionalize the evolution governed by Eq.s (7.1), (7.2),

and (7.3) and describe the linear stability analysis.

7.3.1 Dimensionless equations

The unit of length is set by the hydrodynamic length scale l =
√
η/γ. We set the

unit of time using the diffusion time scale of the bound fraction τ = l2/Db. We

recast the governing equations (7.1), (7.2), and (7.3) in a dimensionless form by

renaming x/l → x, t/τ → t, Cbl → Cb, Cul → Cu, vτ/l → v and Du/Db → D,

ω0τ → ω0, ωonτ → ωon, α/τ → α. Thus, in the dimensionless form the evolution

can be expressed as

∂tCb = −∂x(v Cb) + ∂2
xCb − ωoff Cb + ωon Cu, (7.6)

∂tCu = −∂x(v Cu) +D∂2
xCu + ωoff Cb − ωon Cu, (7.7)

∂2
xv − ξ ∂xf(Cu) + Pe ∂xf(Cb) = v, (7.8)
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where ξ = ξp/γDb denotes the strength of passive pressure and the Péclet number

Pe = ξa(∆µ)0/γDb denotes activity in terms of the ratio of diffusive time scale

τ = l2/Db and advective time scale τa = η/ξa(∆µ)0.

Dimensionless form of rates: (a) The dimensionless form of the stress dependent

off-rate is ωoff = ω0 exp[ασ] where α = η/σ0τ is a dimensionless constant and

σ = ∂xv + Pef(Cb) − ξf(Cu) is the dimensionless stress. (b) The dimensionless

form of strain rate dependent off rate is ωoff = ω0 exp(α∂xv) where α = 1/τν is a

dimensionless constant and ∂xv is a dimensionless strain rate. We investigate the

effect of strain-rate-dependent turnover in the next chapter. In this chapter, we

discuss the stress-dependent turnover of the two-component active fluids. However,

for clarity and simplicity, we begin our discussion using a uniform off-rate.

The total concentration Ct0 = Cb0(t) + Cu0(t) is a conserved field in the sense
∫
dxCt0(x) integrated over the whole space is constant. We perform direct numerical

integration of the dimensionless coupled equations (8.5), (8.6), and (8.7) using the

IMEX scheme (MCNAB algorithm) with periodic boundary conditions [161]. The

details of the scheme is discussed in Appendix-7.7.1.

7.3.2 Linear stability analysis

The homogeneous steady state is described by v = 0 and concentrations Cb0 and

Cu0. We linearize the equations for small deviations around this steady state: v ∼
δv0e

λteiqx and Cb(u) − Cb0(u0) ∼ δCb0(u0)e
λteiqx with wave vector q and growth rate

λ. The spatial Fourier-amplitude of the velocity field can be expressed as

δv0 =
iq

1 + q2
[PeδCb0fCb

− ξδCu0fCu ] , (7.9)

where fCb
= ∂Cb

f(Cb)|Cb=Cb0
= 1/(1 + Cb0)

2 and fCu = ∂Cuf(Cu)|Cu=Cu0 = 1. The

equations governing the concentration evolution leads to λ(δCb0, δCu0) = Ω(δCb0, δCu0).

The properties of the dynamics can be analyzed diagonalizing the 2× 2 linear sta-

bility matrix Ω. This gives eigenvalues λ = (tr ±
√
tr2 − 4 det)/2, where tr and
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det denote the trace and determinant of the matrix Ω, respectively. The parameter

regimes of tr < 0 and det > 0 denote stable homogeneous state. The eigenvalues

show non-zero imaginary part if det > tr2/4. The homogeneous state undergoes

pulsating instability at tr = 0 for det > 0. At det > 0 regime, the pulsating state

transforms into inhomogeneous pattern as the linear instability line tr = 2
√
det is

crossed by increasing tr. On the other hand, the whole region of det < 0 is linearly

unstable with respect to the homogeneous state, leading to pattern formation.

7.4 Uniform turnover

In this section, we investigate the active fluids with uniform turnover. We describe

the linear stability analysis and explore the phase diagram in the ωon-Pe plane for

constant off-rate ω0.

7.4.1 In the absence of pressure

In the limit of high activity Pe ≫ ξ, the pressure term in Eq. (8.7) can be neglected.

We investigate the pattern formation and phase diagram in ωon-Pe.

Linear stability analysis

In the absence of pressure Eq. (7.9) reduces to δv0 = iq [PeδCb0fCb
] /(1+q2). Linear

analysis of Cb and Cu evolution Eq. (8.5) and (8.6) around a small perturbation of

the form Cb(u) − Cb0(u0) ∼ δCb0(u0)e
λteiqx and using the linearised form of δv0 leads

to the linear stability matrix Ω,

Ω = −q2


1− Pe

1+q2
Cb0fCb

0

− Pe
1+q2

Cu0fCb
D


+


−ω0 ωon

ω0 −ωon


, (7.10)

The eigen values of the linear stability matrix Ω in Eq. (7.10) are λ = (tr±
√
∆)/2

where tr is the trace of the linear stbility matrix and ∆ = tr2 − 4 det is the
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Figure 7.2: (Color online) Two component active fluids system with uniform turnover in
the absence of pressure ξ = 0. Plot of the maximum eigen value λmax = (tr+

√
∆)/2 of the

linear stability matrix in Eq. (7.10) as a function of q with Péclet numbers Pe = 5.0(�),
5.5(△), 6.0(✸). Inset: The first zero crossing of maximum eigen value (λ) is shown for
Pe = 2.0(�), 2.5(△), 3.0(✸). In a system of size L = 2π, the minimum possible q mode
that influences the system is q = 2π/L = 1. This suggests that the uniform state in such
a system at Pe = 5.0 will be linearly stable – see the region inside the black dashed line
in the main figure covering the region of λ > 0 and q ≥ 1. With increasing system size L,
smaller q-modes can appear. The parameter values used are D = 0.1, ω0 = 1, ωon = 1,
Ct0 = 1.

discriminant of the linear stability matrix in Eq. (7.10) where det is determinant

of the linear stbility matrix in Eq. (7.10). In case of ∆ > 0, maximum eigen value

of the linear stability matrix is λmax = (tr +
√
∆)/2 = 0 determines the boundary

between linearly stable to linearly unstable regimes. In case of ∆ < 0, the trace

tr = 0 of the linear stability matrix in Eq. (7.10) determines the phase boundary

between stable spiral and unstable spiral.

The trace of the linear stability matrix in Eq. (7.10),

tr = −q2(1 +D) +
q2

1 + q2
PeCb0fCb

− (ω0 + ωon) (7.11)

It switches sign from negative to a positive value with increasing of contractile
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Figure 7.3: (Color online) Two component active fluid with uniform turnover in the
absence of pressure ξ = 0. The system size is L = 2π. (a) shows a non-uniform pattern of
bound concentrations Cb(x). (b) shows a non-uniform pattern of unbound concentrations
Cu(x). (c) corresponding to the velocity profile v(x) and (d) represents the active stress
σa(x). The parameter values are D = 0.1, ω0 = 1, ωon = 1, Ct0 = 1 and Pe = 5.5.

activity Pe. The discriminant of the linear stability matrix in Eq. (7.10) is

∆ =

[
−q2 (1 +D) +

q2

1 + q2
PeCb0fCb

− (ω0 + ωon)

]2

+ 4 ωon

(
q2

1 + q2
PeCu0fCb

+ ω0

)
. (7.12)

The condition to get an imaginary part in the eigen values is ∆ < 0. In case of

contractile active fluids the activity parameter Pe is always positive. Thus, the

discriminant ∆ in Eq. (7.12) is always positive leading states that could be either

linearly stable or linearly unstable.

Fig. (7.2)(a) shows the variation of maximum eigen value of linear stability

matrix in Eq. (7.10) with mode number q for two component active fluids system

with uniform turnover rate. Inset of Fig. (7.2) shows the minimum amount of

activity Pe required for the onset of instability.
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Figure 7.4: (Color online) Phase diagram for the two component active fluid with
uniform turnover and pressure ξ = 0 for system size L = 2π in one dimension. The linearly
stable (LS) regime represents λmax < 0 and linearly unstable (LU) regime represents
λmax > 0. The phase boundary corresponds to λmax = 0 where λmax = (tr+

√
∆)/2 where

tr is given by Eq. (7.11) and∆ is given by Eq. (7.12). The points denote results from direct
numerical integrations of Eq. (8.5), (8.6), and (8.7). The symbols denote homogeneous
steady state (�) fluid pattern and inhomogeneous pattern formation (▽). The growing
modes within linearly stability analysis corresponding to the linearly unstable regime
(LU) regime stabilizes by the non-linearities in the equations forming steady patterns.
The parameter values used are D = 0.1, ω0 = 1, Ct0 = 1.

Patterns and phase diagram

We solve the dimensionless governing Eqs. (8.5), (8.6), and (8.7) numerically, for a

periodic system of size L = 2π in one dimension. Fig. (7.3)(a) shows a non-uniform

fluid pattern of bound concentrations Cb. Fig. (7.3)(b) shows a non-uniform fluid

pattern of unbound concentrations Cu. Fig. (7.3)(c) corresponding to velocity v(x)

and Fig. 7.3(d) represents the active stress σa(x). Fig. (7.4) shows the corresponding

phase diagram in the ωon-Pe plane. It clearly shows that a minimum activity

Pe is required for pattern formation. The transition from homogenous state to

pattern formation shows an interesting re-entrant behavior with ωon rate leading to

a homogeneous to pattern forming to homogeneous state with increasing ωon.

172



Chapter 7

����

���

���

���

� � �

�a�

�

�

� � �

�b�

�

�

� � �

�c�

����

���

���

���

� � �

�d�

����

���

���

���

� � �

�e�

����

���

���

���

� � �

�f�

λ
λ

q q q

Figure 7.5: (Color online) Two component active fluids system with uniform turnover
in the presence of pressure ξ = 1. Plot of the real part(black solid line) and imaginary
part(blue dashed line) of the maximum eigen value λmax = (tr +

√
∆)/2 ≡ λRe + iλIm

of the linear stability matrix Ω in Eq. (7.13) as a function of mode number q. Fig. (a),
(b), and (c): Pe = 15, ωon = 0.001 (a), 0.011 (b), and 0.021 (c). Fig. (d), (e), and (f):
ωon = 0.01, Pe = 11 (d), 12 (e), and 13 (f). The parameter values are D = 0.1, ω0 = 0.01,
Ct0 = 1.

7.4.2 In the presence of pressure

Here, we investigate the two-component active fluids with uniform turnover in the

presence of pressure, ξ ̸= 0. We describe the linear stability analysis and explore

the phase diagram in the ωon-Pe plane.

Linear stability analysis

The linear stability matrix in this case becomes

Ω = −q2


1 0

0 D


+

q2

1 + q2


PeCb0fCb

−ξCb0fCu

PeCu0fCb
−ξCu0fCu


+


−ω0 ωon

ω0 −ωon


 . (7.13)

The eigen-values are are λ = (tr±
√
∆)/2 where tr is the trace and ∆ = tr2 − 4det

is the discriminant of Ω. For ∆ < 0, the trace tr = 0 of the linear stability matrix in

Eq. (7.13) determines the phase boundary between the stable spiral and unstable

spiral phase. In case of ∆ > 0, the maximum eigen-value of the linear stability

matrix is λmax = (tr +
√
∆)/2. Here λmax = 0 determines the boundary between
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the linearly stable and linearly unstable phases.

The trace tr of the linear stability matrix in Eq. (7.13),

tr = −q2(1 +D) +
q2

1 + q2
[PeCb0fCb

− ξCu0fCu ]− (ω0 + ωon). (7.14)

Trace of the linear stability matrix switches sign from negative to a positive value

with increasing contractile activity Pe. Thus, it leads to oscillatory instability when

discriminant ∆ < 0. In the hydrodynamic limit the trace in Eq. (7.14) simplifies to

trq→0 = −(ω0+ωon). Thus, there is no instability in the hydrodynamic limit. Now,

we calculate discriminant ∆ of the linear stability matrix in Eq. (7.13),

∆ =
[
−q2 (1 +D) + q2

1+q2
(PeCb0fCb

− ξCb0fCu)− (ω0 + ωon)
]2

+4
(
− q2

1+q2
ξCb0fCu + ωon

)(
q2

1+q2
PeCu0fCb

+ ω0

)
. (7.15)

The condition to get imginary part in the eigen values is ∆ < 0. The first term

of the discriminant in Eq. (7.15) is always poisitive. In the absence of pressure

ξ = 0, the discriminant ∆ in Eq. (7.15) is always positive. And, the second term of

the discriminant in Eq. (7.15) switches sign from positive to a negative value when

ξ > (1 + q2)ωon/q
2Cb0fCu . Thus discriminant ∆ in Eq. (7.15) may switch the sign

from a positive to a negative value in the presence of pressure.

Steady state results: phase diagram, patterns, pulsation

In Fig. (7.6) we show the phase diagram obtained from the above analysis and direct

numerical integration of Eq. (7.14). This shows three phases, homogeneous steady

state, localized pulsation, and steady state pattern formation. Fig. (7.7) and

Fig. (7.8) show space-time plot of bound, unbound concentrations, and the velocity

profile. Fig. (7.7) shows localized pulsation of the non-uniform fluid pattern. Here,

the bound and unbound concentrations show same phase pulsation. The peak

of bound concentration emerges at the same spatial location as the peak of the

unbound concentration. On the other hand, Fig. (7.8) displays local structure in
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Figure 7.6: (Color online) Phase diagram of the two component active fluid with uniform
turnover in the presence of pressure ξ = 1, for system size L = 2π in one dimension. The
black solid line corresponds to tr = 0 in Eq. (7.14), and the dashed blue line corresponds to
∆ = 0 and tr > 0 in Eq. (7.15). The regime between these two lines represents the unstable
spiral phase. The points denote numerical integrations of Eq. (8.5), (8.6), and (8.7).
The symbols denote regimes of homogenous steady state (�), localized pulsation (✸),
and inhomogeneous steady state pattern (✷). The parameter values used are D = 0.1,
ω0 = 0.01, Ct0 = 1.

the stationary pattern forming phase.

Average bound, unbound concentrations, and flow velocity : The spatial

average quantity of a function f(x, t) defined as Sf (t) = 1
2π

∫ L

x=0
dx f(x, t). We

numerically investigate the spatial average of Cb(x, t), Cu(x, t) and v(x, t). The

sptial average of bound and unbound concentration becomes SCb
(t) = Cb0, SCu(t) =

Cu0 respectively. The mean flow velocity Sv(t) = 0. Thus, there is no overall

directed flow in active fluids with uniform turnover.

7.5 Stress-dependent turnover

In this section, we investigate the active fluids with stress-dependent turnover. We

describe the linear stability analysis and explore the phase diagram in the ωon-

Pe plane. The concentration fields Cb and Cu are coupled through advection and

stress-dependent turnover. The spatially homogeneous steady-state solutions of the

governing equations are Cu0 = (ωeff
0 /ωon)Cb0 where ωeff

0 = ω0 exp[α(Pef(Cb0) −
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Figure 7.7: (Color online) Evolution of the relevant fields (a) Cb(x, t), (b) Cu(x, t), and
(c) v(x, t) for the two component active fluid with uniform turnover in the presence of
pressure ξ = 1. The parameter values are D = 0.1, ω0 = 0.01, Ct0 = 1, ωon = 0.004,
Pe = 20 correspond to the localized pulsatory patterns. The initial homogeneous state
starts to show pulsations ear t = 150.

ξf(Cu0))] and v = 0. The total concentration is Ct0 = Cb0 + Cu0. Thus, the steady

state solution for Cb0 leads to the condition,

Ct0 − Cb0 =
ω0Cb0

ωon

exp[α(Pef(Cb0)− ξf(Ct0 − Cb0))]. (7.16)

This self-consistent equation is solved for particular parameter values to obtain the

homogeneous steady state values of Cb and hence Cu = Ct0 − Cb in Fig. (7.9).

The procedure of linear stability analysis of Cb and Cu evolution using a small

perturbation of the form Cb(u) − Cb0(u0) ∼ δCb0(u0)e
λteiqx and Eq. (7.9) leads to the
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Figure 7.8: (Color online) Evolution of the relevant fields (a) Cb(x, t), (b) Cu(x, t), and
(c) v(x, t) for the two component active fluid with uniform turnover in the presence of
pressure ξ = 1. The parameter values D = 0.1, ω0 = 0.01, Ct0 = 1, ωon = 0.005, P e = 20
correspond to stationary pattern formation. The initial homogeneous state starts to form
pattern near t = 100.

Figure 7.9: (Color online) Two component active fluids system with stress-dependent
turnover in the presence of pressure ξ = 1. The steady state solution of bound concentra-
tion Cb0 is shown as a function of ωon and Pe. We numerically solved the self-consistent
Eq. (7.16) for parameter values D = 0.1, α = −0.1 ω0 = 0.01, Ct0 = 1.

linear stability matrix Ω,

Ω = −q2


1 0

0 D


+

q2

1 + q2


Pe Cb0fCb

−ξ Cb0fCu

Pe Cu0fCb
−ξ Cu0fCu




+
α ωeff

0 Cb0

1 + q2


−Pe fCb

ξ fCu

Pe fCb
−ξ fCu


+


−ωeff

0 ωon

ωeff
0 −ωon


 (7.17)
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Figure 7.10: (Color online) Phase diagram of the two component active fluid with
stress-dependent turnover in the presence of pressure ξ = 1, for system size L = 2π in
one dimension. The different color shades correspond to predictions of three different
states from linear stability analysis: stable spiral (green SS), unstable spiral (red US),
linearly unstable (yellow LU). The symbols denote phase behaviors obtained from direct
numerical integration of Eq. (8.5), (8.6), and (8.7). The symbols denote regimes of pattern
formation (✷), localized pulsation (✸), and homogeneous fluid (�). The parameter values
used are D = 0.1, α = −0.1 ω0 = 0.01, Ct0 = 1.

The homogeneous state undergoes an instability when the real part of the greater

eigenvalue or trace of the linear stability matrix tr(q) > 0. The condition for

growing oscillatory instability is tr2 < 4 det. Assuming tr2 < 4 det, the trace

of the linear stability matrix determines the phase boundary between steady-state

homogeneous patterns and pulsatory patterns. The real eigen value of the linear

stbility becomes λRe = tr(q) and the imaginary part of the eigen value is λIm ≡
√
−(tr2 − 4 det). When tr2 ≥ 4 det, real eigen value of the linear stability matrix

is λRe ≡ λmax = (tr +
√
tr2 − 4 det)/2 and λIm = 0.

The trace of the linear stability matrix in Eq. (7.17) is

tr(q) = −q2(1 +D) + q2

1+q2
[Pe Cb0fCb

− ξ Cu0fCu ]

−α ωeff
0 Cb0

1+q2
[Pe fCb

+ ξ fCu ]− (ωeff
0 + ωon), (7.18)

In the hydrodynamic limit of q → 0, the trace leads to, trq→0 = −α ωeff
0 Cb0 [Pe fCb

+ ξ fCu ]−
(ωeff

0 + ωon). Moreover, the determinant in this hydrodynamic limit is detq→0 = 0

leading to the discriminant ∆ = tr. Thus the maximum eigen-value is λq→0 = trq→0.
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Fig. (7.10) shows the phase diagram in ωon-Pe plane. It show three linear-

stability regimes: stable spiral (SS), unstable spiral (US), and linearly unstable

(LU). Direct numerical solutions of Eq. (8.5), (8.6), and (8.7) show that they

correspond to homogeneous fluid (SS), localized pulsation (US), and stationary

pattern formation (LU). Thus, stress-dependent turnover shows same qualitative

phase behavior as in the case of uniform turnover.

7.6 Conclusions

We have studied the two-component active fluids with turnover. First, we have

studied the pattern formation in the presence of the uniform turnover rate. Second,

we have studied the effect of stress-dependent turnover.

1. Uniform turnover: In the absence of pressure, we showed onset of pattern
formation in the ωon-Pe plane with increasing Pe. The phase diagram showed
a re-entrant transition along the ωon axis. The local variation of active stress
generates a contractile flow and, as a result, the pattern formation.

2. Uniform turnover: In the presence of pressure, using the phase diagram in the
ωon-Pe plane we showed that apart from the homogeneous state and pattern
formation, the system sustains localized pulsation over an intermediate regime
of Pe and ωon. The interplay of active contractile stress and pressure allows
such pulsatory fluid pattern.

3. Stress-dependent turnover: The phase diagram in the presence of stress de-
pendent turnover shows same qualitative behavior as in the previous case,
displaying homogeneous steady state, pulsatory patterns, and stationary pat-
tern formation.

In the next Chapter, we study the two-component active fluid in the presence

of strain-rate dependent turnover.
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7.7 Appendix

7.7.1 Implicit-Explicit (IMEX) Scheme: MCNAB method

We solved the governing equations using the Modified Crank-Nicolson, Adams-

Bashforth (MCNAB) method [161]. Here, we outline the discretization of advection-

diffusion equation,

∂tf(x, t) = ∂2
xf(x, t)− ∂x[v(x, t)f(x, t)] + S(x, t), (7.19)

where S(x, t) is the source term.

The time derivative can be discretized as

∂tf(x, t) =
f(x, t+ dt)− f(x, t)

dt
. (7.20)

The diffusion term is discretized using the Crank-Nicolson method,

∂2
xf(x, t) =

9

16

f(x+ dx, t+ dt) + f(x− dx, t+ dt)− 2f(x, t+ dt)

dx2

+
3

8

f(x+ dx, t) + f(x− dx, t)− 2f(x, t)

dx2

+
1

16

f(x+ dx, t− dt) + f(x− dx, t− dt)− 2f(x, t− dt)

dx2

The advection term is discretized in modified Adams-Bashforth manner, to give

∂x[v(x, t)f(x, t)] =
3

2
∂x[v(x, t)f(x, t)]−

1

2
∂x[v(x, t− dt)f(x, t− dt)]

=
3

2

[
v(x, t)

f(x+ dx, t)− f(x− dx, t)

2 dx
+ f(x, t)

v(x+ dx, t)− v(x− dx, t)

2 dx

]

− 1

2

[
v(x, t− dt)

f(x+ dx, t− dt)− f(x− dx, t− dt)

2 dx

+f(x, t− dt)
v(x+ dx, t− dt)− v(x− dx, t− dt)

2 dx

]

The IMEX method require additional memory storage of f(x, t−dt). We descritized

Cb(x, t), Cu(x, t) and v(x, t) in the similar method of discritization f(x, t).

180



Chapter 7

Stress-dependent turnover : The source term,

S(x, t) = −ω0e
ασ(x,t)Cb(x, t) + ωonCu(x, t).

The source term is discretized in explicit method,

S(x, t) =
3

2
S(x, t)− 1

2
S(x, t− dt)

=
3

2

[
−ω0e

ασ(x,t)Cb(x, t) + ωonCu(x, t)
]

− 1

2

[
−ω0e

ασ(x,t−dt)Cb(x, t− dt) + ωonCu(x, t− dt)
]

Strain-rate dependent turnover: This will be used in the next chapter. The

source term is

S(x, t) = −ω0e
α∂xv(x,t)Cb(x, t) + ωonCu(x, t).

As there is no second-order derivative in x, thus we discretize the source term in

explicit method,

S(x, t) =
3

2
S(x, t)− 1

2
S(x, t− dt)

=
3

2

[
−ω0 exp

(
α
v(x+ dx, t)− v(x− dx, t)

2 dx

)
Cb(x, t) + ωonCu(x, t)

]

− 1

2

[
−ω0 exp

(
α
v(x+ dx, t− dt)− v(x− dx, t− dt)

2 dx

)
Cb(x, t− dt)

+ωonCu(x, t− dt)] (7.21)

The presence of f(x, t+dt) in the diffusion allows one to treat the problem as in

linear algebra involving a tridiagonal matrix. We use the Thomas algorithm to solve

the tridiagonal matrix system efficiently. The dt value used in numerical integration

ranges from dt = 10−4 to dt = 10−6 depending on the required numerical stability

of the system.
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Contractile active fluids with

strain-rate-dependent turnover

8.1 Introduction

In the previous chapter, we have discussed two-component active fluids with uni-

form turnover and stress-dependent turnover. In this chapter, we consider the case

of strain-rate dependent turnover. The spatiotemporal regulation of actomyosin

network plays crucial role in numerous biological contexts. Examples include de-

velopment of embryos, morphogenesis in epithelial cells [162, 163]. The coupling

between chemical process of active stress generation and mechanical response in

terms of resultant flow can lead to pattern formation [23]. Pulsatory patterns can

form in a two-component system of fast diffusing species up-regulateing the ac-

tive stress and slow diffusing species down regulating it [74]. Actomyosin modeled

as an active elastomers with turnover showed emergence of spontaneous oscilla-

tions [75, 164, 165].

The actomyosin networks undergo assembly and disassembly [78]. The non-

muscle myosin-II proteins can produce contractile stress on the network in their

attached state. They themselves undergo attachment- detachment cycles relieving
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the local stress build up. As in the previous chapter, here we consider the actomyosin

system as a two-component active fluid undergoing turnover between a passive

to active contractile state. The passive state may emerge due to either myosin-

detachment from the network or the disassembly of the network itself. The passive

to active transition is assumed to be controlled by a constant rate parameter. We

consider a strain-rate dependent off-rate from the active to passive state, such that

it increases under local extension of the active fluid, as a positive strain-rate takes

different parts of the network away from each other.

The chapter is organized as follows. We present the model and governing

equations for the two-component contractile active fluid with strain-rate depen-

dent turnover in Section-8.2. In Section-8.3, we present a linear stability analysis,

and identify the various phases. In Section-8.4, we present the phase diagram and

associated dynamics with the help of numerical integration and analytical results.

Finally, we conclude presenting a summary in Section-8.5.

8.2 Model

dissociation
( Myo2 negatively feedback )

Assembly Disassembly
       state       state

M
y

o
2

ad
v

ec
ti

o
n

Myosin minifilament

Myosin subunit

G actin monomer

F actin filament

Key :

Figure 8.1: (Color online) Pulsed contractility in actomyosin. Myosin II contractil-
ity-induced advection leads to the actomyosin assembly state. Negative feedback via
strain-rate from the myosin II reduces (enhances) the off-rate at the center (edges) of the
assembly state [27].

We present a description of the actomyosin layer as a two-component active fluid.
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We build up a hydrodynamic description with turnover between its components. We

consider a minimal phenomenological description (Fig.8.1). In the active state with

myosin motor cross-linking, the actomyosin undergoes active contractile stress. On

the other hand, detachment rate of myosin motors decreases under such contraction

providing a positive feedback. When myosins detach, the network relaxes and in

expanded networks the detachment rate also increases. The myosin-bound active

network is described by the bound concentration Cb(x, t), and the passive unbound

fraction has the concentration Cu(x, t). We consider an overall conservation such

that
∫ L

dx[Cb +Cu] is a constant. The evolution of the concentrations is described

by

∂tCb = −∂x(vCb) +Db∂
2
xCb − ωoffCb + ωonCu, (8.1)

∂tCu = −∂x(vCu) +Du∂
2
xCu + ωoffCb − ωonCu, (8.2)

η∂2
xv + ∂xσa = γv, (8.3)

where, the last equation determines the flow velocity obtained from a force-balance

condition involving the friction coefficient γ describing the drag due to the substrate.

Here, we consider the passive pressure to be zero, i.e., negligible with respect to the

active stress,

σa = ξa(∆µ)0f(Cb). (8.4)

The active stress arises from the force exerted by the motor proteins (MP) attached

to the filaments[37]. Here, for simplicity, we consider an isotropic active stress

generation [23]. ξa is the strength of the activity with ξa > 0 corresponding to a

contractile stress. (∆µ)0 represents the change in chemical potential due to the

hydrolysis of adenosine-tri-phosphate (ATP). The local strain rate ϵ̇ = ∂xv. We

consider here an off-rate obeying the Hill form ωoff = ω0 exp(ϵ̇/ν) where ν is a

parameter with the dimension of a frequency. For ν > 0, the off-rate increases with
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extensile strain ϵ̇ > 0.

We recast the governing Eqs. (8.1)-(8.3) in dimensionless form by letting x/l →
x, t/τ → t, Cbl → Cb, Cul → Cu, vτ/l → v and Du/Db → D, ω0τ → ω0,

ωonτ → ωon, ντ → α−1 where l is the hydrodynamic length scale l =
√

η/γ and

τ = l2/Db is the diffusion time scale of the bound fraction. The dimensionless form

of governing equations are

∂tCb = −∂x(vCb) + ∂2
xCb − ω0e

α∂xv Cb + ωonCu, (8.5)

∂tCu = −∂x(vCu) +D∂2
xCu + ω0e

α∂xv Cb − ωonCu, (8.6)

∂2
xv + Pe∂xf(Cb) = v, (8.7)

where Peclet number Pe = ξa(∆µ)0/γDb is the ratio of the diffusive time scale

τ = l2/Db to advection time scale τa = η/ξa(∆µ)0.

The active contractile stress arises from the binding of myosin mini-filaments[23,

155–159]. Thus, bound actomyosin concentration controls the contraction. The

contraction saturates at large active concentrations[160]. Thus, the isotropic active

stress is chosen to have a hyperbolic form f(Cb) = Cb/(1 + Cb).

The dimensionless coupled Eqs. (8.5)-(8.7) can be numerically solved using the

IMEX scheme (MCNAB algorithm) with periodic boundary conditions, as outlined

in the appendix of the previous chapter [161]. We study the emergent structure

and dynamics as a function of Pe and ωon.

8.3 Linear Stability Analysis

The concentration fields Cb and Cu are coupled through advection and viscous strain

field dependent turnover. The spatially homogeneous steady-state solutions of the

governing equations are Cu0 = (ω0/ωon)Cb0, v = 0. The bound (Cb) and unbound

(Cu) actomyosin concentrations are not individually conserved fields because of

their inter-conversion, but the total concentration Ct(x, t) = Cb(x, t) + Cu(x, t) is,
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Figure 8.2: (Color online) Plots of the real (solid line) and imaginary (dashed line) parts
of the maximum eigen-value of the linear stability matrix as a function of wave number q
for the two component active fluid with strain-rate dependent turnover in one dimension.
The parameter values are D = 0.1, ω0 = 1, α = 10, Ct0 = 1. (a, b, c) Pe = 2.75,
ωon = 0.25(a), 1.00(b), 1.75(c). (d, e, f) ωon = 1.0, Pe = 2.0(d), 2.5(e), 3.0(f).

obeying 1
L

∫ L

0
Ct(x, t) dx = constant.

First, we linearize the force-balance condition for a small perturbation v ∼
δv0e

λteiqx with wave vector q and growth rate λ. The spatial Fourier-amplitude of

the velocity field reads

δv0 =
iq

1 + q2
PeδCb0fCb

, (8.8)

where fCb
= ∂Cb

f |Cb=Cb0
. Furthermore, the linear stability analysis of Cb and Cu

evolution equation for small perturbations Cb(u) − Cb0(u0) ∼ δCb0(u0)e
λteiqx lead to

the linearized form λ(δCb0, δCu0) = Ω(δCb0, δCu0). The linear stability matrix Ω,

Ω = −q2


1− Pe

1+q2
(1 + αω0)Cb0fCb

0

− Pe
1+q2

(Cu0 − αω0Cb0) fCb
D


+


−ω0 ωon

ω0 −ωon


 . (8.9)

This 2× 2 linear stability matrix Ω leads to the following possibilities. The eigen-

values of the matrix, λ = (tr ±
√
tr2 − 4 det)/2, where tr and det denote the trace

and determinant of the matrix Ω, respectively. The parameter regime of tr < 0
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and det > 0 denote stable homogeneous state. The eigenvalues have non-zero imag-

inary part if det > tr2/4. The homogeneous state undergoes pulsating instability

at tr = 0 with det > 0. In the det > 0 region, the pulsating state transforms into

stationary pattern formation as the linear instability line tr = 2
√
det is crossed by

increasing tr. On the other hand, the whole region of det < 0 is linearly unstable

for homogeneous state, leading to pattern formation.

In the hydrodynamic limit of q → 0, non zero eigen-value λ = −(ω0 + ωon) cor-

responds to a fast relaxation for deviations from the homogeneous state (Cb0, Cu0).

The trace of the linear stability matrix is

tr(q) = −q2
(
A− B

1 + q2

)
− (ω0 + ωon), (8.10)

where, A = 1+D and B = Pe(1+αω0)Cb0fCb
. Thus, homogeneous state undergoes

an instability when the real part of the larger eigenvalue is positive, in other words

the trace of the linear stability matrix tr(q) > 0. To get the growing oscillatory

instability that gives the steady-state pulsations, Ω must obey the condition tr2 <

4 det.

When tr2 < 4 det, the trace of Ω determines the phase boundary between the

homogeneous steady-state and pulsatory patterns. The real part of the eigen-value

of Ω becomes λRe = tr(q) and the imaginary part λIm ≡
√
−(tr2 − 4 det). When

tr2 ≥ 4 det, the real part of the eigen-value is λRe ≡ λmax = (tr +
√
tr2 − 4 det)/2

and λIm = 0.

The choice α ̸= 0 keeps the off-rate strain-rate dependent and a growing function

of local extension. The element Ω12 = ωon in the linear stability matrix in Eq. (8.9).

The other non-diagonal element of the linear stability matrix in Eq. (8.9) is Ω21 =

ω0 + q2Pe (Cu0 − αω0Cb0) fCb
/(1 + q2). Thus, Ω21 can become negative only when

α > Cu0/ω0Cb0 = 1/ωon. The critical condition for switching the sign of the second

term of Ω21 to negative is αωon > 1.

In the case of tr2 ≤ 4 det, the growth rate is maximum when ∂qtr|q=qmax = 0, at
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Figure 8.3: (Color online) Phase diagram in ωon-Pe plane for two component active
fluids with strain-rate-dependent turnover in one dimension. The lines correspond to
phase boundaries calculated from the linear stability matrix(Ω) represents in Eq. (8.9).
The solid black line is the plot of the tr = 0. The dashed blue line corresponds to
tr2 − 4 det = 0 with the condition tr > 0 and the dashed green line corresponds to
det = 0 with the condition tr < 0. The points denote numerical results: homogenous
steady-state (�), moving phase-separated pattern(✸), stationary mixed pattern(▽), and
stationary phase-separated pattern(✷). The moving pattern is shown in Fig. (8.4). The
stationary mixed and phase-separated patterns are shown in Fig. (8.6). The parameter
values used in this plot are L = 2π, D = 0.1, ω0 = 1, α = 10, Ct0 = 1.

the wave number qmax = (
√

B/A − 1)1/2. The real part of the eigen-value goes to

zero at tr(qc) = 0. The threshold q value of the positive growth rate is qmax = qc

with qc = [(ω0 + ωon)/(1 +D)]1/4.

Using the value of qc in Eq. (8.10), setting tr(qc) = 0, enables us to write the

parametric dispersion relation in a mode independent way,

Pec =
1 + q2c

(1 + αω0)Cb0fCb

[
1 +D +

ω0 + ωon

q2c

]
. (8.11)

Thus, the condition for emergence of unstable spiral is Pe ≥ Pec where Pec in

Eq. (8.11) is the critical Peclet number. The frequency of oscillation in the unstable

spiral regime is,

f =
√
−(tr(qc)2 − 4 det(qc)), (8.12)
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and the time period of such oscillations is T = 2π/f .

In a periodic system of size L, the relevant wave numbers are qm = 2mπ/L

with m = 0,±1,±2, . . . . We find that the mode q1 becomes unstable first as Pe

and ωon increases. In Fig. (8.2), we plot the real part and imaginary part of the

maxium eigen value with D = 0.1, ω0 = 1, α = 10, Ct0 = 1. Fig. (8.2)(a)–(c) shows

the variation of eigen values as a function of q with different ωon for constant Pe.

Fig. (8.2)(d)–(f) shows the variation for constant ωon. In the case of system size

L = 2π, q1 = 2π/L = 1. In Fig. (8.2)(a, b, c) λIm is presented in the range q ≥ 1. In

Fig. (8.2)(a), λRe remains close to zero at q = 1 for Pe = 2.75 and ωon = 0.25. This

is the transition point from stable spiral to unstable spiral. In Fig. (8.2)(b), λRe is

positive at q ≥ 1 for Pe = 2.75 and ωon = 1. Thus, linear stability shows the onset

of the unstable spiral. In Fig. (8.2)(c), λRe is zero for Pe = 2.75 and ωon = 1.75,

identifying the transition point between unstable spiral and stable spiral. It clearly

indicates towards a reentrant transition from stable spiral to unstable spiral and

back to stable spiral. Fig. (8.2)(d, e, f) suggests the transition from stable spiral to

unstable spiral with increasing Pe. Further increase of Pe leads to the transition

from unstable spiral to linearly unstable state that leads to pattern formation due

to non-linearities in the system (the blue dashed line in Fig. 8.3).

8.4 Phase diagram

We numerically solve the governing dimensionless Eqs. (8.5)-(8.7) in one dimen-

sional periodic domain of size L = 2π with D = 0.1, ω0 = 1. See Appendix-8.6.1

for a discussion on parameter values. Here, we study the dynamical phases in the

long-time limit giving results independent of the initial conditions. In Fig. (8.3),

we present a phase diagram in ωon-Pe plane. The lines in Fig. (8.3) represents the

phase boundaries obtained from linear stability matrix in Eq. (8.9). The solid black

line corresponds to tr = 0 representing the phase boundary between the stable spi-

ral and unstable spiral phases. The dashed green line corresponds to det = 0 with

the condition tr < 0 representing the phase boundary between the linearly stable
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Figure 8.4: (Color online) Moving pattern. Kymogrsph shows the time evolution of
Ca, Cp and v for two component active fluids with strain-rate-dependent turnover in one
dimension. The parameter values are L = 2π, D = 0.1, ω0 = 1, ωon = 0.5, Pe = 2.6,
Ct0 = 1.

and linearly unstable phases. The dashed blue line corresponds to tr2 − 4 det = 0

with the condition tr > 0 representing the phase boundary between the unstable

spiral and linearly unstable phases.

The linear stability analysis predicts the existence of the unstable spiral. In this

regime, we observe pulsatory patterns from direct numerical integration of the non-

linear equations. The non-linearities stabilizes the growth of modes corresponding to

the unstable spiral phase, generating steady-state pulsatory patterns. In the linearly

unstable regime of the stability analysis, numerical results show stationary pattern

formation, as the growth of the unstable modes are stabilized by non-linearities.

The non-linear effect dominates more in the regime of high on-rate, leading to a

significant difference between the predictions of the phase boundary of the unstable

spiral and linearly stable phase and numerically obtained phase boundary separating

the moving or pulsatory and pattern forming phases. For constant Pe, we observe

re-entrant transition between the homogeneous state, to pattern formation, and
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back to homogenous state with increasing ωon, at a fixed Pe, e.g., at Pe = 3 in

Fig. (8.3). In particular, the phase diagram shows three different kinds of re-entrant

transitions with increasing ωon: (i) For Pe ≈ 2.75, re-entrance from homogeneous

state to moving pattern to homogenous state. (ii) For Pe ≈ 3, re-entrance from

homogenous state to stationary pattern to moving pattern to homogeneous state

transition. (iii) For Pe > 3 re-entrance from homogeneos state to stationary co-

localized pattern to stationary pattern with shifted maxima of Cb(x) and Cu(x) to

homogenous state.

In the following we discuss the instabilities of pulsation, moving patterns and

stationary pattern.

Pulsation and moving patterns: We show the onset of pulsation and moving

patterns using the time evolutions of the bound concentration Cb(x, t), unbound

concentration Cu(x, t), and fluid velocity field v(x, t) in Fig. (8.4), starting from a

homogeneous initial condition. We observe phase-separated pulsatory patterns for

400 ≲ t ≲ 600. Near t ≈ 600, this pulsatory pattern starts to show emergence of a

steady non-uniform shape moving with a constant flow velocity. In the absence of

any external field breaking the right-left symmetry, this spontaneous flow is equally

likely to go in either direction. The chosen direction, in the absence of stochastic

forces, depends on the initial perturbation but the flow speed itself is robust and

depends only on the control parameters like Pe and ωon.

To investigate quantitatively the pattern forming phases, we calculate the spatial

average of bound concentration, unbound concentration, and velocity as a function

of time. For this purpose we use the spatial average of a function f(x, t) defined

as Sf (t) = 1
L

∫ L

0
dx f(x, t). We numerically investigate the spatial averages of

Cb(x, t), Cu(x, t) and v(x, t). Fig. (8.5)(a) shows the oscillations in average bound

(Sb) and unbound (Su) concentrations in the pulsatory regime 400 ≲ t ≲ 600. The

average velocity Sv in the pulsatory regime is zero. We observe emergence of a

non-zero constant mean velocity Sv at t > 600 in Fig. (8.5)(a). In this steady-state

regime the oscillations in average bound and unbound concentrations disappear.
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Figure 8.5: (Color online) (a) Time evolution of Sb, Su and Sv for two component
active fluids with strain-rate-dependent turnover in one dimension. Here Sb ≡ Sb − Cb0

and Su ≡ Su −Cu0 where Cb0 = ωonCt0/(ω0 + ωon) and Cu0 = Ct0 −Cb0. The parameter
values are D = 0.1, ω0 = 1, ωon = 0.5, Pe = 2.6, q = 1, Ct0 = 1. (b) Average flow
velocity(|Sv|) as a function of ωon for Pe =2.75. (c) Average flow velocity(|Sv|) as a
function of Pe for ωon = 1. (b, c) The parameter values are L = 2π, D = 0.1, ω0 = 1,
Ct0 = 1.

The fields Cb and Cu maintain their shape and propagates with a constant velocity

as in a solitary wave packet. We call this phase as moving pattern. In Fig. (4)(c),

the dimensionless propagation velocity is vmax ∼ 0.2, which, when translated into

dimensional form, gives vmax ∼ 0.12 µm s−1, a number which belongs to the same

approximate range of actomyosin flow velocities observed in different contexts, e.g.,

in Drosophila germband extension [150].

Average flow velocity: In the absence of any explicit symmetry breaking, both the

directions of the spontaneous flow is equally likely. Thus we use the modulus of the

spontaneous flow velocity |Sv| as a measure of the flow and plot it in Fig. (8.5)(b, c).

They show the flow velocity as a function of (b) ωon and (c) Pe. It increases with

ωon and shows a tendency of saturation. With Pe, the flow velocity reaches a well-

defined maximum near Pe = 3. Thus it is clear that reaching a maximum velocity

requires a subtle balance between the active contractility and turnover which the
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Figure 8.6: (Color online) Kymogrsph shows the time evolution of Ca, Cp and v for
two component active fluids with strain-rate-dependent turnover in one dimension with
L = 2π, D = 0.1, ω0 = 1, Ct0 = 1. (a, b, c) Stationary (mixed) pattern. The parameter
values are ωon = 0.15, Pe = 3.5. (d, e, f) Stationary phase-separated pattern. The
parameter values are ωon = 0.5, Pe = 3.

living cell may use as control parameters.

Stationary pattern: This model shows two kinds of stationary patterns, the

details of which are illustrated in Fig. (8.6) using L = 2π, D = 0.1, ω0 = 1,

Ct0 = 1 : (i) Fig. (8.6)(a, b, c) show stationary mixed patterns at ωon = 0.15

and Pe = 3.5. Fig. (8.6)(a) and Fig. (8.6)(b) display kymographs of bound and

unbound concentrations respectively. On the other hand, Fig. (8.6)(c) shows the

kymograph of the fluid velocity. It is clearly seen that the peaks of the bound and
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Figure 8.7: (Color online) Time evolution of Sb, Su and Sv for two component active
fluids with strain-rate-dependent turnover in one dimension with L = 2π, D = 0.1, ω0 = 1,
Ct0 = 1. Here Sb ≡ Sb − Cb0 and Su ≡ Su − Cu0 where Cb0 = ωonCt0/(ω0 + ωon) and
Cu0 = Ct0 − Cb0. The parameter values corresponds to (a) stationary (mixed) pattern
with ωon = 0.15 and Pe = 3.5 and (b) stationary phase-separated pattern with ωon = 0.5
and Pe = 3.

unobound concentrations appear at the same spatial location. Thus, we call this

kind of pattern as mixed stationary pattern. (ii) Fig. (8.6)(d, e, f) show stationary

phase-separated patterns at ωon = 0.5 and Pe = 3. Fig. (8.6)(a) and Fig. (8.6)(b)

display kymographs of bound and unbound concentrations, respectively. Further,

Fig. (8.6)(c) shows the kymograph of fluid velocity. Here, the peaks of the bound

and unbound concentrations appear at different spatial locations suggesting a phase-

separation between them. We denote this kind of patterns as stationary phase-

separated pattern. Thus with changing parameter the possibility of a steady state

phase separation is observed.

We find stationary mixed patterns for low on-rates ωon and stationary phase-

separated patterns for relatively high on-rates ωon, at a constant Pe, as shown in

Fig. (8.3). In the case of a low on-rate, the average bound concentration is much

smaller as Cb0 = Ct0 ωon/(ωon + ω0). The low diffusivity of Cb with respect to Cu

maintains the phase separation at large ωon rate, while at small ωon rates they get

enough opportunity to mix. The phase diagram shows stationary mixed patterns for

low contractility Pe and stationary phase-separated patterns for higher contractility

for a constant ωon, as is shown in Fig. (8.3).
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In Fig. (8.7) we plot the average bound and unbound concentrations, and the

flow velocity as a function of time corresponding to Fig. (8.6). The average flow

velocity remains zero throughout the time evolution associated with the stationary

behavior of the patterns.

8.5 Conclusions

We have studied the two-component active fluids with strain-rate-dependent turnover.

We numerically investigated the dynamics and observed three pattern forming

regimes along with the homogenous state in ωon-Pe plane. The pattern forming

phases show stationary phase-separated and stationary mixed patterns, and mov-

ing non-uniform pattern. The onset of the moving pattern phase starting from an

homogenous initial state first shows formation of localized pulsatory patterns in the

intermediate time regime. This subsequently transforms to the moving pattern in

long times. The peaks of the bound and unbound concentrations appear at dif-

ferent positions locations indicating phase-separation as the pattern moves. The

stationary patterns appear in two forms, stationary pattern where the bound and

unbound fractions remain mixed with their peaks appearing at the same location.

In the phase-separated pattern, the peaks of bound and unbound concentrations

remain spatially separated. While our predictions are amenable to direct exper-

imental verifications using cytoskeletal extracts, they may have implications for

pattern formation in cells and growing tissues.

8.6 Appendix

8.6.1 Physical parameters

Active contratile stress strength ξa(∆µ)0/γ ∼ 25.4±9.2 µm2 s−1 [166] for C. elegans

where ξa(∆µ)0 denotes isotropic active stress generated through ATP consumption
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of myosin, positive for contraction and dependent on the change in chemical po-

tential associated with ATP hydrolysis (∆µ)0. And γ is a friction coefficient that

describes frictional interactions between the cortex and its surrounding cytosol and

membrane. The flow velocity of actomyosin v ∼ 0.08 µm s−1 [150]. We use the

hydrodynamic length scale corresponding to the C. elegans cortex l ≈ 14µm [166].

The timescale value is τ = 24 s [166].

Table 8.1: We list the physical parameter values used in our analysis.

Definition Parameters Values

Viscosity of actomyosin cortex η ∼ 104 pN s µm−2[167]
Frictional coefficient γ(= η/l2) ∼ 51 pN s µm−4

Bound diffusion constant Db(= l2/τ) ∼ 8 µm2 s−1

Unbound diffusion constant Du 0.9± 0.2 µm2 s−1 [168]
On rate ωon ∼ 0.2 s−1

Bare off rate ω0 ∼ 0.2± 0.08 s−1[78]
Isotropic active contraction ξa(∆µ)0/γ ∼ 25.4± 9.2 µm2 s−1[166]

∼ 0− 100 µm2 s−1[169]

Table 8.2: We estimate various scaled parameter values and ranges using Table-8.1. We
list all the scaled parameters here.

Definition Scaled parameters Scaled values

Diffusivity ratio D(= Du/Db) ∼ 0.1
On rate ωon(= ωonτ) ∼ 4.8

Bare off rate ω0(= ω0τ) ∼ 4.8
Turnover timescale α(= α/τ) 1, 3 [77]
Active contraction Pe(= ξa(∆µ)0/γDb) ∼ 1.97− 4.27, 0− 15
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Discussions

In the first part of this thesis, we have presented three models of the active Brownian

particle (ABP). We started our exploration using ABPs that are considered to self-

propel with a constant speed in a heading direction, which undergoes stochastic

reorientation. We showed a mapping of the path probabilities of the trajectories to

a semiflexible polymer model. Using a Laplace transform of the governing Fokker-

Planck equation of the active Brownian particle, we described a direct method to

derive exact expressions for all the moments of the relevant dynamical variables in

arbitrary dimensions.

We then considered the stochasticity in active speed as well. We first used a

model of speed generation via an active Ornstein-Uhlenbeck process [15]. We ex-

tended the technique of Laplace transforming Fokker-Planck equations to calculate

all the time-dependent moments of dynamical variables in arbitrary dimensions.

We considered a second model incorporating speed fluctuations in terms of an ad-

ditive Gaussian noise due to a chemical process generating the active speed [16].

We again calculated all the time-dependent dynamical moments in arbitrary dimen-

sions using the governing Fokker-Planck equations. These studies showed several

ballistic-diffusive crossovers and non-trivial changes in displacement distributions.
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In the second part of the thesis, we studied polymers driven by a molecular

motor assay. First, we presented the dynamics of a rigid filament under motor-

protein drive. We modeled motor proteins as active extensible harmonic linkers

with load-dependent rates of extension and detachment from the polymer. Under

constant external loading, the system shows a transition from a stable configura-

tion to instability towards detachment of the filament from the motor proteins.

Under external elastic loading, we found emergence of limit cycle oscillations via a

supercritical Hopf bifurcation with a change of activity and the number of motor

proteins. Numerical simulations for large number of motor proteins showed good

agreement with mean-field predictions.

The cytoskeletal filaments are semiflexible polymers. Thus we presented a study

of semiflexible polymers driven by a motor proteins assay. The conformations of the

filament undergo a first-order phase transition from open-chain to spiral. It showed

a reentrant transition in both the active extension and the turnover, defined as the

ratio of attachment-detachment rates. The size and shape of the polymer changed

non-monotonically as the phase transition proceeded. The relevant autocorrelation

functions displayed a double-exponential decay, and the correlation times show a

maximum at intermediate activity.

In the third part of the thesis, we presented studies of active pattern formation

and dynamics in this system using a coarse-grained hydrodynamic formulation.

We have studied a two-component active fluid undergoing advection-diffusion and

turnover in the presence of stress-dependent flow. We first considered the simplest

case of constant turnover between the active and passive fractions. Depending on

the Péclet number and on-off rates, the system remained either in a homogeneous

steady state or exhibited stationary pattern formation. The maximum densities of

the two components appear at the same spatial locations. The incorporation of

extensile pressure due to the passive component led to pulsatory pattern formation.

In modeling the stress and strain-rate dependent turnover, we assumed that the

off-rate describing the transition from active cross-linked to passive unbound state

increases (decreases) with the local extension (compaction). The phase behavior for
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stress-dependent off-rate remains qualitatively the same as in the case of constant

turnover. However, in the case of strain-rate dependent turnover, we observed

qualitatively new features. Depending on the bare on-rate and Péclet number,

the system showed transitions from a homogeneous steady-state to spatial pattern

formations in the presence or absence of a steady-state flow. The steady-state

patterns showed two different possibilities – (i) the maxima of active and passive

densities co-appear in space; (ii) they segregate spatially.

One-line summary: We have presented an extensive study of active matter:

from active particles to semiflexible filaments driven by molecular motors to a two-

component active fluid model of the cytoskeletal complex.
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