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Summary

Symmetric­key cryptographic algorithms are the oldest form of cryptographic algo­

rithms to secure communication between two parties having identical keys. There

are three types of modern symmetric­key algorithms –– stream ciphers, block ciphers

and MAC algorithms. This thesis is devoted to the security analysis of some popular

symmetric­key algorithms — including lightweight constructions — and their software

implementations.

We begin with a discussion on some of the potential flaws in probability­based crypt­

analysis. As a case study, the related­key distinguishing attacks on the stream ciphers

Py, Pypy, TPy, TPypy, RCR­64 and RCR­32 proposed in a paper published in the Jour­

nal of Universal Computer Science are reviewed. We show that the computations that

led to the alleged attacks are flawed and establish the non­existence of the keystream

biases detected in the Py family of stream ciphers.

Following this, we present distinguishing attacks on the Welch­Gong (WG) family

of stream ciphers. The WG family of stream ciphers include two subfamilies, which we

call WG­A and WG­B, of patented (ultra­)lightweight ciphers designed by Gong et al.

The Waterloo Commercialization Office, Canada, has included the WG­A in an RFID

anti­counterfeiting system and has proposed the WG­B for securing 4G/5G networks.

Our attacks exploit the input­output correlations in the nonlinear transformations used

by these ciphers. These are the first attacks on these ciphers.

Next, we show carry flag attacks on the unprotected implementations of SPECK

family of lightweight block ciphers and HMAC­Streebog family of MAC algorithms.

ix



x SUMMARY

SPECK is an ISO/IEC standard for RFID devices developed by Beaulieu et al. of the

NSA. HMAC–Streebog is a MAC algorithm based on the Streebog, a family of hash

functions defined in the Russian cryptographic standard GOST R 34.11–2012. These

symmetric­key algorithms use modular addition, making them vulnerable to carry flag

attacks. To the best of our knowledge, this thesis presents the first results analysing the

resistance of unprotected implementations of the SPECK and the HMAC­Streebog to

carry flag attacks. Our attacks, which work on the full SPECK, are comparatively more

feasible than the other attacks applicable on the full ciphers. We present two types of

side­channel attacks on the HMAC­Streebog: passive attacks without fault injections

and active attacks with fault injections. Our passive attack is the best non­fault attack

on HMAC­Streebog­256. Similarly, our active attacks fare better than the existing fault

attacks on HMAC–Streebog as they have a larger temporal window for fault injection,

target a more accessible location and cannot be mitigated with output redundancy coun­

termeasures.

In the final part of this thesis, we analyse the RCR family of stream ciphers and their

software implementations. The RCR ciphers have remained unbroken since they were

published in 2007. We present arguments that not only support the designers’ security

claims but suggest, in general, that the ciphers are secure against several classes of crypt­

analytic attacks. We also suggest ways to protect software implementations of the RCR

ciphers against (cache­)timing and processor flag attacks. Our performance evaluation

suggests that the protected implementation of the RCR­64 encrypts long messages at

speeds comparable to some of the fastest stream ciphers available today. This is the first

work to present a detailed study on the security and performance of the RCR ciphers.
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Chapter 1

Introduction

1.1 Cryptography

Cryptography is the science that studies various mathematical aspects of information

security used to protect data that is communicated over an insecure channel or stored in

an unprotected medium. As Rivest said, it “is about communication in the presence of an

adversary” [1]. Though historical records indicate the usage of secret messages around

4000 years ago, cryptography, as we see it today, is just less than 100 years old. The

military and governments predominantly used classical cryptography to maintain the

confidentiality of the information communicated. With the advent of computers and the

internet, cryptography became more and more ubiquitous by being part of a multitude

of applications, and now each of us knowingly or unknowingly employs it while using

internet banking, e­commerce, smartphones, Internet of Things (IoT), etc.

Apart from confidentiality, which is considered the central aspect of information se­

curity, modern cryptography focuses on three fundamental services: integrity, authen­

tication, and non­repudiation. The set of algorithms used to provide these information

security functions is known as cryptosystem. A present­day cryptosystem addresses the

following:

• Secrecy of data

1
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• Unauthorised alteration of data

• Identification of the communicating parties

• Preventing one from denying his actions

1.1.1 Cryptographic Primitives

Cryptographic primitives are the fundamental cryptographic algorithms that are used as

building blocks for higher­level cryptographic algorithms or security protocols. Let us

consider an insecure channel over which two parties — Alice and Bob— are communi­

cating and the adversary — Eve — is trying to eavesdrop on the communication. Alice

and Bob use cryptographic primitives, which may or may not require a numerical pa­

rameter called the key, to protect their messages from Eve. Based on the usage of the

key, they can be divided into the following three categories:

• Symmetric­key primitives that require Alice and Bob to share a secret key (more

on symmetric­key primitives to follow in Sect. 1.2)

• Public­key primitives which need a public / private key pair to secure the com­

munication in one direction

• Unkeyed primitives that do not require a key to implement the information security

function

1.1.2 Public­key Ciphers and Digital Signature Schemes

These are the two popular types of cryptographic algorithms that constitute the public­

key primitives. Cipher is an algorithm that performs the operations encryption and

decryption to protect the confidentiality of the messages communicated between Alice

and Bob. During encryption, Alice converts the message in its original form (plaintext)

into an unintelligible form (ciphertext) using the encryption key Ke. On receiving the

ciphertext, Bob performs the decryption operation to convert it back to the plaintext
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using the decryption key Kd. For a public­key cipher, Ke (resp. Kd) forms the public

(resp. private) key such that the message encrypted using the public key Ke can be

decrypted only using the private key Kd. Similarly, a digital signature scheme enables

Alice to confirm the authenticity of a message from Bob by verifying the signature on

the message, which Bob generated with his private key Kd, using Bob’s public key

Ke. The focus of this thesis is not on public­key cryptography and there is no overlap

between the works presented in this thesis and public­key cryptography. Therefore, the

reader may refer to [2, 3, 4] for further details on popular public­key cryptosystems

such as RSA and ECC.

1.1.3 Cryptographic Hash Functions

These are the classic examples of unkeyed cryptographic primitives which are used to

verify the integrity of the data. A functionh(·)whose domain is larger than its rangemust

have the following properties to qualify as a cryptographically secure hash function.

1: Collision resistance: It should be computationally infeasible to find two distinct

points x1 and x2 in the domain of h(·) such that h(x1) = h(x2). The upper bound

of the collision resistance of an n­bit hash function is set as 2n/2 by the birthday

attack [5].

2: First preimage resistance (often known as preimage resistance): For any y in the

range of the n­bit hash function h(·), it should not be possible to find xwith fewer

than 2n evaluations of h(·) such that h(x) = y.

3: Second preimage resistance: For a given x in the domain of the h(·), it should

be computationally infeasible to find another point x′ in the domain such that

h(x) = h(x′). For an n­bit hash function, second preimage resistance has an

upper bound of 2n.
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In addition to verification of message integrity, CHFs are mainly used in MAC algo­

rithms, in digital signature schemes, as PRNGs, etc. Many of the popular CHFs such as

MD5 [6], SHA­1 [7], SHA­2 [8], Whirlpool [9], Streebog [10], etc. are based on a de­

sign technique known as the Merkle­Damågard construction, which was independently

devised by Merkle [11] and Damågard [12]. It is an iterative construction scheme that

is used to build collision­resistant CHFs from collision­resistant one­way compression

functions. The compression function takes a message block of fixed size (known as the

block size of the CHF) as input and outputs a shorter block. A CHF based on Merkle­

Damågard construction computes the hash of a messageM := M0 ∥M1 ∥ . . .Mn−1 as

follows:

Hi+1 = f(Hi,Mi) , i = 0, 1, . . . , n− 1 ,

where f(·) is the compression function, H0 is the initialization vector, |Mi| is the block

size of the CHF andHn is the resultant hash value. To process arbitrarily long messages

and also to enhance the security, the final message block is often padded with bits that

encode the length of the message.

Any CHF discussed in this thesis could be assumed to be based on the Merkle­

Damågard construction unless explicitly mentioned.

1.2 Symmetric­key Primitives

The three most popular symmetric­key primitives are the following:

• Stream ciphers

• Block ciphers

• MAC algorithms

As the term “ciphers” suggests, stream ciphers and block ciphers — collectively

known as symmetric­key ciphers — are algorithms used to protect the confidentiality of
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data in a symmetric­key setting. Until 1976, when Diffie and Hellman proposed the first

public­key cryptosystem [13], symmetric­key ciphers were the only known algorithms

for encryption. Compared to public­key ciphers, which rely on complex mathematical

problems for security, symmetric­key ciphers are constructed using simple operations

which can be efficiently implemented on modern computers. Therefore, stream ciphers

and block ciphers are many­folds faster than their public­key counterparts. Due to this

reason, security protocols generally use symmetric­key ciphers, whose keys are securely

exchanged using public­key encryption algorithms, to encrypt the actual data. Thus

symmetric­key algorithms are considered as the workhorses of the cryptographic world.

This thesis will be primarily focusing on the study of stream ciphers, block ciphers

and MAC algorithms. The fundamental aspects of each of these primitives will be dis­

cussed in the following subsections.

1.2.1 Stream Ciphers

Stream ciphers are the class of encryption algorithms which encrypt each bit of a plain­

text message one at a time. They are well suited for applications where streaming data

has to be processed without any delay. One should be aware of the one­time pad be­

fore knowing the stream ciphers. For an n­bit plaintext message m, the one­time pad

generates an n­bit ciphertext c using the operation:

c(i) = m(i) ⊕ k(i) ,

where k is ann­bit keywhose bits are generated independently and randomly. According

to Shannon, in order to achieve unconditional security, the secret key must be at least as

uncertain as the plaintext [14]. Despite the fact that the one­time pad has the smallest

possible key to satisfy Shannon’s condition for unconditional security, it cannot be part

of a practical cryptosystem as it is difficult to distribute and manage a key which is as

long as the plaintext. In order to overcome this problem, stream ciphers were introduced.
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A stream cipher is a cryptographic algorithm that takes as input the secret key, which

is much shorter than the plaintext, and a parameter called the initialization vector (IV),

and outputs a pseudorandom keystream sequence as long as the plaintext. Similar to

the one­time pad, the stream cipher generates the ciphertext by mixing the plaintext

with the keystream using the XOR operation. Since the keystream is a pseudorandom

sequence, the stream cipher does not satisfy Shannon’s condition for unconditional se­

curity. Nevertheless, under the assumption that the keystream “appears random” to a

computationally bounded adversary, it is considered to be computationally secure.

For a cipher to be semantically secure, the ciphertext should not leak any informa­

tion about the plaintext. In the absence of an IV, stream ciphers can achieve semantic

security only if they avoid reusing the key to encrypt distinct messages. If the same key

is used to encrypt two partly identical messages, the resulting ciphertexts will also have

a pattern similar to the plaintexts. If the messages are wholly distinct, reusing the key

will result in generating ciphertext pairs whose XOR sumwill be equal to that of the cor­

responding plaintext pairs as discussed in the transmission in depth problem [15]. Since

frequent rekeying is not always possible, the IV, which is used only once with a key, is

the indispensable parameter that makes a stream cipher semantically secure. Depending

on the application, initialization vectors may be generated incrementally or randomly,

and are often publicly known.

In general, the following three algorithms constitute a stream cipher.

• The Key Scheduling Algorithm (KSA). This algorithm takes the secret key K as

input and generates the internal state of the stream cipher.

• The IV Scheduling Algorithm (IVSA). The internal state generated by the KSA is

updated using this algorithm by mixing the IV with it.

• The Keystream Generation Algorithm (KGA). The internal state initialised using

the KSA and IVSA— collectively known as the key/IV setup— is given as input

to this algorithm. During each iteration, KGA generates a fixed­length keystream
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and updates the internal state. Though it is possible to generate an indefinitely

long keystream sequence from a key/IV pair, most of the stream ciphers will have

a restriction on its length for enhanced security.

Stream ciphers can be further categorised into two types: synchronous stream

ciphers and asynchronous stream ciphers. Let us discuss them in some detail.

Synchronous Stream Ciphers. The stream ciphers that generate keystreams indepen­

dently of the plaintext and ciphertext belong to this category. Let f be the function that

implements the KGA, zi and si+1 be the keystream block and the internal state, respec­

tively, generated at the end of ith round of the KGA, where i = 0 indicates the first

round, and s0 be the internal state at the end of the key/IV setup. A synchronous stream

cipher can be represented in one of the following ways depending on whether the key

or the IV is reused in the KGA:

(zi, si+1) = f(K, IV, si) ,

(zi, si+1) = f(K, si) ,

(zi, si+1) = f(IV, si) ,

(zi, si+1) = f(si) .

Synchronous stream ciphers have the following properties:

1: Since they cannot self­synchronise, the sender and the receiver must employ ad­

ditional mechanisms to synchronise the keystream generation.

2: Flipping of a ciphertext bit due to transmission error will not affect the decryption

of the remaining bits.

3: Insertion or deletion of a ciphertext bit by an active adversary or due to transmis­

sion error will affect the decryption of the subsequent bits until the synchronisation

is regained.
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Synchronous stream ciphers, which are often constructed using linear feedback

shift registers (LFSRs) or arrays, are more popular and well studied than asynchronous

stream ciphers. Both LFSR­based and array­based synchronous stream ciphers have

been analysed in this thesis. LFSR­based constructions are usually hardware­efficient,

and the most widely used among them include E0 (used in the Bluetooth standard)

[16], A5/1 (used in the GSM cellular telephone standard) [17], SNOW 2.0 (an ISO/IEC

stream cipher standard) [18, 19] and its variant SNOW 3G (used in UMTS 3G net­

works) [20]. When compared to LFSR­based ciphers, array­based stream ciphers are

considered to be best­suited for software applications. The stream cipher RC4, designed

by Rivest in 1987, is the first and most popular array­based stream cipher [21, 22].

Being remarkably simple and fast in software, RC4 has inspired the designs of many

array­based ciphers such as the HC and Py families of stream ciphers [23, 24, 25].

Asynchronous Stream Ciphers. The stream ciphers that generate the keystream block

as a function of the key and a fixed number (say l) of previous ciphertext blocks are

known as asynchronous or self­synchronising stream ciphers. They can be represented

as:

zi = f(K, c′i−1) ,

where c′i−1 represents the l ciphertext blocks ci−l−2, ci−l−1, . . . , ci−1. The l dummy ci­

phertext blocks required to generate the keystream blocks z0, z1, . . . , zl−1 are derived

from an initialization vector. The stream ciphers Helix, Phelix, SSS and MOUSTIQUE

arewell­known examples of asynchronous stream ciphers [26, 27, 28, 29]. These ciphers

have the following properties:

1: They can self­synchronise even when some of the ciphertext bits get deleted or

inserted during transmission.

2: Single­bit error in a ciphertext block can affect l plaintext blocks at the receiver’s
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end. In order to reduce the intensity of this problem, many asynchronous stream

ciphers are designed with small l.

Henceforth, the term “stream cipher” will refer to synchronous stream ciphers

unless explicitly mentioned.

Ideal Stream Cipher. A stream cipher whose keystream bits are distributed uniformly

at random is considered to be an ideal stream cipher, i.e., if z is the keystream generated,

for an ideal stream cipher, Pr(z(i)) = 0.5 for all i ≥ 0. The most important design

objective of a good stream cipher is to achieve this ideal behaviour.

1.2.2 Block Ciphers

A block cipher is an encryption function that maps anm­bit plaintext block to anm­bit

ciphertext block using a secret key K. Being a one­to­one function, the inverse of it is

used to decrypt the ciphertext block. In other words, for a fixed K the block cipher is

a bijection that permutesm­bit vectors whose domain and range are the plaintext space

and the ciphertext space, respectively. Block cipher can be considered as a universal

symmetric­key primitive as it can be used to build both stream ciphers and message

authentication codes, which we will see in the later part of the Section. Moreover, the

constructions of Davies­Meyer [31], Matyas­Meyer­Oseas [32] and Miyaguchi­Preneel

[33, 34] compression functions, which are used in CHFs, are also based on block ciphers.

Block cipher designs are based on the following two concepts introduced by

Shannon in his landmark paper Communication Theory of Secrecy Systems: confusion

and diffusion [14]. To create confusion, the relation between the ciphertext statistics

and the plaintext statistics must be too complex for an attacker to exploit. Similarly,

if each bit of the plaintext and the key can influence many bits of the ciphertext

then we say that the cipher has good diffusion property. Most of the block ciphers

achieve these two properties by using some combination of the two basic operations:

substitution and permutation. The block cipher AES [30], which is a de facto standard
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for encryption today, is designed solely using these operations. Such constructions,

known as the Substitution­Permutation Networks (SPNs), encrypt a plaintext block by

repeatedly performing certain carefully chosen substitutions and permutations along

with the addition of the key material. Let us briefly look into the details of yet another

construction called the Feistel Networks (FNs) based on which the block ciphers

analysed in Chapter 4 has been designed.

Feistel Network. Though Shannon proposed the concept of a product cipher, which is

regarded as the predecessor of modern block ciphers, in 1948 [14], it took more than

a decade to start open research on block ciphers. The research conducted by the IBM

Corporation under the supervision of Horst Feistel, culminated in the design of the Lu­

cifer family of block ciphers, which are reckoned the first known construction based on

FN [35]. Lucifer inspired the design of the US encryption standard DES [36], which

was the most popular and widely deployed symmetric­key cipher until the introduction

of AES.

An FN­based cipher or Feistel cipher can be represented as follows:

xi+1 = yi ,

yi+1 = xi ⊕ f(yi, ki) , i = 0, 1, . . . , r − 1 ,

where P := x0 ∥ y0 and C := xr ∥ yr are the plaintext and ciphertext blocks, respec­

tively, ki is the subkey used in the (i + 1)th round, f(·) is a time­invariant function

often called the round function and r is the total number of rounds. The subkeys used

in each round are generated from K using a KSA. In [37], Luby and Rackoff analysed

the FNs and proved that given f(·) is a truly random function, the Feistel cipher will be

a truly random permutation which is secure against chosen plaintext attacks, if r ≥ 3.

In order to make the cipher secure against both chosen plaintext and known plaintext

attacks, the number of rounds has to be greater than 4 (more about CP and KP attacks
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will be discussed in Sect. 1.6). Therefore, if f(·) and the KSA are strong, a small r is

sufficient for a secure Feistel cipher. Some of the notable examples of Feistel ciphers,

other than DES and Lucifer, include Blowfish [38], Camellia [39], KASUMI [40],

GOST [41] and TDEA [42].

As we have already seen, block ciphers are inherently designed to encrypt m­bit

messages. A shorter message has to be “padded” with extra bits to make its length

equal to the block size. In order to encrypt the messages that are longer than m bits,

block ciphers are used in certain modes of operation. Let p be a message of size t ·m

bits which is divided into t blocks p0, p1, . . . , pt−1. Let E be a block cipher which

encrypts an m­bit plaintext block using the key K to generate the ciphertext block ci,

for 0 ≤ i < t. The block cipher E can be typically used in one of the following five

modes of operation, as specified in FIPS 81 [43] and NIST SP800­38A [44], to encrypt

p. Since it is fairly straightforward to understand the decryption using these modes,

their details will be omitted.

Electronic Code Book (ECB). As illustrated in Figure 1.1, in this mode of operation,

the plaintext blocks are encrypted independently of one another. Since the ciphertext

blocks corresponding to identical plaintext blocks in the message always remain the

same, a block cipher used in ECB mode does not hide the patterns in the message as

shown in Figure 1.2. Another disadvantage with the ECB mode is that shifting the

positions of the plaintext blocks will get replicated in the ciphertext. Due to these

reasons, ECB mode, which does not provide semantic security, is seldom used.

Cipher­Block Chaining (CBC). In this mode of encryption, a plaintext block is

XORed with the previous ciphertext block before being given as input to the block

cipher. A schematic representation of the CBC mode is shown in Figure 1.3. Similar to

stream ciphers, an IV, which will be XORed with the first plaintext block, is required to



12 INTRODUCTION

E

p0

c0

K E

p1
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K · · · E

pt−1

ct−1

K

Figure 1.1: The ECB mode of encryption

Figure 1.2: An example showing how the ECB mode of encryption reveals the patterns
in an image (first bitmap image was encrypted using AES­128 in ECB mode to generate
the second image)



INTRODUCTION 13

E

p0

⊕IV

c0

K E

p1

⊕

c1

K

· · ·

· · · E

pt−1

⊕

ct−1

K

Figure 1.3: The CBC mode of encryption

initialise this mode of operation. Due to the chaining mechanism, each ciphertext block

not only depends on the current plaintext block but also on all the preceding blocks.

This benefits the encryption by providing semantic security. Despite that the chaining

has two major disadvantages. Firstly, it limits the parallelisation of the encryption

process. Secondly, it increases the number of blocks affected by the error propagation,

which is one in ECB mode, to two.

Cipher Feedback (CFB). In this mode of encryption, the block cipher functions as an

asynchronous stream cipher. The decryption of the messages encrypted using ECB and

CBCmodes of operation requires the functionE−1. Whereas, in CFBmode of operation

E alone is enough to do both encryption and decryption. As shown in Figure 1.4, the

first keystream block, which is the output ofE(IV,K) is XORed with the first plaintext

block to generate the corresponding ciphertext block. The encryption of the subsequent

plaintext blocks can be represented by:

ci = pi ⊕ E(ci−1, K) , for 1 ≤ i ≤ t− 1 .

Since the ciphertext blocks are part of the chain, the advantages and disadvantages of

the CBC mode are applicable to the CFB mode too.

Output Feedback (OFB). This mode of encryption, which is shown in Figure 1.5, can
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Figure 1.4: The CFB mode of encryption
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Figure 1.5: The OFB mode of encryption

be represented by:

zi = E(zi−1, K) , z−1 = IV ,

ci = pi ⊕ zi , i = 0, 1, . . . , t− 1 .

As in this mode the block cipher operates like a synchronous stream cipher, the error

propagation is limited to one block.

Counter (CTR). Similar to the OFB mode, in this mode also, the block cipher is a

synchronous stream cipher. It is represented by:

zi = E(vi, K) ,

ci = pi ⊕ zi , i = 0, 1, . . . , t− 1 ,
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Figure 1.6: The counter mode of encryption

where the input to the block cipher vi is generally generated from the IV and a counter

j as IV ∥ j or IV ⊕ j as shown in Figure 1.6. The CTR mode supports parallelisation

due to the absence of the feedback mechanism and is therefore considered to be faster

than the OFB mode.

The modes of operation discussed till now are meant to protect the confidentiality

of the message. In practice, integrity and authenticity of the message also have to

be protected and in symmetric­key setting MAC algorithms are used to achieve the

same. Block ciphers can also be used in certain other modes of operation to perform

authenticated encryption that provides confidentiality, integrity and authentication.

Some of these modes are Offset Codebook (OCB) [45], Counter with CBC­MAC

(CCM) [46], EAX Mode [47] and Galois/Counter (GCM) [48]; descriptions of these

modes are beyond the scope of this thesis.

Ideal Block Cipher. We have seen that a block cipher will permute anm­bit input block

using a k­bit secret key. The permutation varies depending on the key, and the total

number of possible permutations equals (2m)!, which can be approximated as 2(m−1)2m

using Stirling’s approximation [49]. For typical values of k and m, the block cipher

will provide only a small fraction of the possible permutations. Therefore, a good block

cipher is designed to behave like an ideal block cipher which will choose a permutation
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uniformly at random from the 2(m−1)2m available choices, for a randomly chosen key.

1.2.3 MAC Algorithms

The main objective of the symmetric­key algorithms presented in Sect. 1.2.1 and Sect.

1.2.2 is to protect the confidentiality of the message sent by Alice to Bob from a passive

adversary. In the presence of an active adversary, who is able to modify the message in

transit, these algorithms cannot guarantee that Alice indeed sent the message received

by Bob. A message authentication code (MAC) algorithm is a symmetric­key algorithm

used to assure the identity of the party fromwhom the message originated. If the original

message sent by Alice got modified during transmission, she could not be considered as

the originator of the altered message. Thus the MAC algorithm implicitly protects the

data integrity too.

A MAC algorithm can be defined as a keyed hash function hK(·), parametrised by

a secret key K, which takes a message M of arbitrary length as input and outputs a

fixed­length value often known as the MAC. It satisfies the following properties:

1: Calculation of hK(M) is computationally easy ifK andM are known.

2: For an unknownK, given the MACs generated for any number of messages, it is

computationally hard to find a valid MAC for any new message.

To protect the authenticity and integrity of the message M , Alice sends the MAC

t := hK(M) along with the message, where K is only known to Alice and Bob. On

receiving (M, t), Bob verifies the validity of the pair by recomputing the MAC. If Eve,

who eavesdropped on the communication between Alice and Bob, can find another valid

pair (M ′, t′) without knowing K, such that t′ = hK(M
′), then that pair is said to be a

forgery. A good MAC algorithm should make it computationally infeasible to forge a

valid MAC on a new message.

MAC algorithms are generally derived from block ciphers or CHFs, and due to

this reason, relatively few dedicated MAC algorithms have been designed when com­
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pared to other symmetric­key primitives. TheMessage Authenticator Algorithm (MAA)

[50], which was part of the ISO 8731­2 banking standard [51], is one among them. In

Sect.1.2.2, we saw the various modes of operations of block ciphers to perform encryp­

tion and authenticated encryption. Similarly, block ciphers can also be used in certain

modes of operation to provide authentication. Some of the popular examples of block ci­

pher based MACs are Cipher Block Chaining MAC (CBC­MAC) [52], encrypted CBC­

MAC (EMAC) [53], eXtended Electronic Code Book MAC (XECB­MAC) [54], One­

keyMAC (OMAC) [55], Cipher­basedMAC (CMAC) [56], Galois MAC (GMAC) [57]

and Parallelizable MAC (PMAC) [58].

Though it is easy to compute the MAC using a keyless CHF by appending the secret

key to the message, either as a prefix or suffix, such schemes are not secure against

forgeries [59]. For instance, let h be an iterative CHF described in Sect. 1.1.3. For a

message x, if the secret prefix method is used to compute the MAC t := h(K ∥ x),

it will be trivial to forge a MAC for some x ∥ y using h(t ∥ y) under the assumption

that the CHF is vulnerable to length extension attack.1 To preclude the forgery attacks,

a combination of the secret prefix and secret suffix methods, known as the envelope

method [59], was proposed. Later, to achieve even better security, a generic construc­

tion called MDx­MAC was proposed, which transforms any secure hash function of

the MD4 family into a secure MAC algorithm by adding a key to the additive constants

of the compression function [60]. The most popular CHF based MAC in use today is

the HMAC, and we shall discuss it in more detail.

HMAC. The hash based MAC (HMAC) is a simple construction proposed by Bellare

et al. in 1996 to generate the MAC using a CHF [61]. It has been standardised by NIST

[62] and ISO [63]. Presently, it is used as a data authentication mechanism for the IPsec

[64], SSH [65] and TLS [66] protocols. It employs an iterative hash function h, which

uses the compression function f , in conjunction with a secret key K and generates a
1A length extension attack enables an attacker to compute h(x ∥ y) for an unknown x and a chosen

y using h(x) and the length of x.
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MAC for the messageM as follows:

t = h((K0 ⊕ opad), h((K0 ⊕ ipad),M)) ,

where t is the MAC, opad and ipad are public constants, andK0 is the secret key if |K|

equals the block size of h, or a function of K otherwise. The constants opad and ipad

are generated by repeating the bytes 0x36 and 0x5c, each b times respectively, where b

is the block size of the CHF in bytes. The different realisations of HMAC are denoted

by HMAC­X, where X is the underlying CHF. Bellare et al. have proved that HMAC is

a secure MAC algorithm if the following conditions hold [61]:

1: the CHF h is collision resistant for random and secret IVs

2: the compression function f(·) is pseudorandom2

3: the MAC computed using the compression function — f(K,M)— is secure

According to the designers of HMAC, one of the advantages of HMAC is that if an

implementation of the CHF is readily available, then “the MAC can be implemented

by simply calling the existing function” [61]. Therefore, vulnerabilities in the CHF

implementationmay affect the HMAC constructed from it, and this will be demonstrated

in Chapter 5.

1.2.4 Authenticated Encryption Algorithms

We have been discussing symmetric­key primitives that can encrypt or authenticate data.

For a long time, it was believed that by using a strong encryption algorithm, we could

also ensure the authenticity of data [35, 67]. Nevertheless, various studies have shown

that one should never use encryption without providing authentication as an adversary

can gather information about the secret key / plaintext or hijack a valid session by sending

ciphertext of her choice to the decryption algorithm [68, 69]. For example, let us assume
2According to Bellare et al., “relatively weak form of pseudorandomness” suffices.
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that Eve eavesdropped on the ciphertextC0, C1, . . . , Cn−1 sent by Alice to Bob. Suppose

she could establish a legitimate connection with Bob’s cryptosystem, which uses a block

cipher in the CBC mode. In that case, the last n − 1 plaintext blocks sent by Alice can

be successfully recovered by requesting the decryption for C0, C1, . . . , Cn−1 [68].

There are three approaches to combining a secure encryption algorithmwith a secure

MAC algorithm to simultaneously provide confidentiality and authenticity:

• Encrypt­then­MAC (EtM), which generates MAC from the ciphertext,

• Encrypt­and­MAC (E&M), which generates ciphertext and MAC from the plain­

text independently, and

• MAC­then­Encrypt (MtE), which generates MAC from the plaintext and then en­

crypts both of them.

These three approaches are illustrated in Figures 1.7, 1.8 and 1.9, respectively.

E

plaintext

Ke

ciphertext

hKh

MAC

Figure 1.7: Encrypt­then­MAC (EtM) approach to combine encryption and MAC algo­
rithms

Bellare and Namprempre analysed the three approaches and showed that EtM pro­

vides security against adaptive chosen ciphertext attack, provided that the underlying

MAC algorithm is “strongly unforgeable” [70]. Though simplistic, these methods are

inefficient as data has to be processed twice. Some of them are also prone to certain

attacks due to incorrect usage [71]. To overcome these drawbacks, dedicated algorithms

/ primitives have been designed to perform authenticated encryption.
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Figure 1.8: Encrypt­and­MAC (E&M) approach to combine encryption and MAC algo­
rithms

hKh

plaintext ∥MAC

EKe
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Figure 1.9: MAC­then­Encrypt (MtE) approach to combine encryption and MAC algo­
rithms

Symmetric­key algorithms used to ensure a message’s confidentiality and authen­

ticity are called Authenticated Encryption (AE) algorithms. During encryption, an AE

algorithm takes message M and key K as inputs and generates a ciphertext­MAC pair

(C, T ). During decryption, it takes (C, T ) andK as inputs and outputsM after verifying

the validity of (C, T ); the ciphertext­MACpair is discarded if found invalid. Sometimes,

the message may contain some associated data or header A, which is not private but re­

quires authentication. We use a variant of the AE known as Authenticated Encryption

with Associated Data (AEAD) to process such messages. For an AEAD algorithm, C

and T depends on (M,K) and (M,A,K), respectively. Thus it enables Bob to check

the integrity of both the encrypted and unencrypted information in the data sent by Alice.
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An authenticated encryption algorithm can be designed in three ways:

1. Use a block cipher in some special mode of operation. CCM [46], EAX [47],

GCM [48], IAPM [72], XCBC [54] and OCB [45] modes are some of the AE /

AEAD algorithms that use a block cipher as the underlying primitive.

2. Build it from a stream cipher so that the keystream is divided into two parts: one

for encryption and another for authentication. A well­known example of such a

design is the algorithm Grain­128a [73].

3. Design dedicated primitives that perform authenticated encryption. HELIX [26],

ASCON [74], ACORN [75], AEGIS­128 [76] and Grain­128AEAD [77] are some

popular examples of AE / AEAD primitives.

A detailed study of various authenticated encryption algorithms is not in the scope of

this thesis.

1.3 Shannon’s Theory of Secrecy

In 1948, with his landmark paper, ‘A Mathematical Theory of Communication’ [78],

Shannon laid the foundations of information theory. In a follow­up paper, ‘Communi­

cation Theory of Secrecy Systems’ [14], he discussed cryptography from the viewpoint

of information theory. Through these papers, he discussed the notion of perfect secrecy

of a cryptosystem and the uncertainty in detecting its key. In this Section, we will briefly

discuss some of the main ideas introduced by Shannon, which greatly influenced the sci­

entific study of cryptography.

1.3.1 Perfect Secrecy

Let P , C and K respectively represent the plaintext space, ciphertext space and key

space of a symmetric­key cryptosystem whose encryption and decryption functions for

some K ∈ K are denoted by eK(·) and dK(·), respectively. Let P and C represent
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the random variables associated with the plaintext and ciphertext, respectively. For the

cryptosystem to have perfect secrecy, the a posteriori probability that the plaintext is x,

after observing that the ciphertext is y, must be equal to the a priori probability that P

equals x, i.e. Pr(P = x|C = y) = Pr(P = x) > 0 for all x ∈ P , y ∈ C. An attacker

gets no extra information about the plaintext by intercepting the ciphertext from such a

cryptosystem.

Applying Bayes’ theorem on the condition Pr(P = x|C = y) = Pr(P = x) > 0,

Shannon stated that a necessary and sufficient condition for perfect secrecy is Pr(C =

y|P = x) = Pr(C = y) > 0 for all x ∈ P , y ∈ C. The condition Pr(C = y|P = x) > 0

also implies that for a fixed plaintext x, there must be at least one key that encrypts it to

each ciphertext y ∈ C; it follows that |K| ≥ |C|. As the mapping from plaintext space

to ciphertext space is injective, we get |C| ≥ |P|.

Thus Shannon proved that to provide perfect secrecy the cryptosystem has to satisfy

the condition |K| ≥ |C| ≥ |P|. If |P| = |C| = |K|, perfect secrecy will be possible if

and only if every key is used with equal probability 1/|K| and there is a unique K for

every x ∈ P , y ∈ C such that y = eK(x). As mentioned in Sect. 1.2.1, the Vernam

cipher — popularly known as the one­time pad— is a well­known realisation of perfect

secrecy.

1.3.2 Entropy and Redundancy

In Sect. 1.3.1, we saw that a cryptosystem could provide perfect secrecy only if its key

space is at least as large as its plaintext space. It implies that a key must be used only for

one encryption. But in real life, having a key space as large as the plaintext space will

be difficult. To study the effect of encrypting multiple plaintexts using the same key, we

must know the concepts of entropy and redundancy introduced by Shannon.

Let X be a discrete random variable which takes values from the set

{x0, x1, . . . , xn−1} such that Pr(X = xi) = pi for i = 0, 1, . . . , n − 1. The entropy

of X , which is a mathematical measure of the information or uncertainty inX , is given
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by H(X) = −
n−1∑
i=0

pi log2 pi. The conditional entropy of X given Y , where Y is an­

other random variable, is given by H(X|Y ) = −
∑
y

∑
x

Pr(X = x|Y = y) log2 Pr(X =

x|Y = y).

Let M be the set of letters that constitutes a natural language L. The entropy of a

random language formed from M is given by log2 |M |. If the entropy of L is HL then

the redundancy of the language L, which provides the fraction of letters in L that do not

hold any information compared to a random language, is given byRL = 1− HL

log2 |M | . For

example, letM = {a, b} such that Pr(XL = a) = 0.25 and Pr(XL = b) = 0.75, where

XL is a discrete random variable that belongs to the language L. Then, the entropy of L

is given byHL = −(0.25 log2 0.25+ 0.75 log2 0.75) = 0.81 and the redundancy of L is

given by RL = 1− 0.81
log2 2

= 0.19.

1.3.3 Spurious Keys and Unicity Distance

Let K, P and C represent the random variables associated with the key, plaintext and

ciphertext, respectively, of the aforementioned symmetric­key cryptosystem such that

K ∈ K, P ∈ Pn and C ∈ Cn; in other words, the cryptosystem encrypts a plain­

text string of length n using a single key. For the cryptosystem to have perfect se­

crecy, an attacker must not obtain any extra information about P by observing C, i.e.

H(P |C) = H(P ). Shannon showed that the amount of uncertainty of the key remain­

ing after knowing the ciphertext is given by H(K|C) = H(K) +H(P )−H(C). The

conditional entropy H(K|C) is known as the key equivocation. For an ideal cipher,

H(P ) = H(C) =⇒ H(K|C) = H(K).

The uncertainty in determining the key, even when the ciphertext is known, results in

spurious keys. If the ciphertext space and plaintext space are equal in size, the expected

number of spurious keys, sn, given a ciphertext string of length n, where n is sufficiently

large, satisfies the condition sn ≥ |K|
|P|nRL

− 1, where RL denotes the redundancy of the

plaintext language. The expected number of spurious keys becomes 0 when n equals

the unicity distance which is given by n0 ≈ log2 |K|
RL log2 |P| . Therefore, a unique key can be
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determined if we have a ciphertext string of length n0.

The concept of spurious keys shows that key size alone does not guarantee the secu­

rity of a block cipher, if an exhaustive key search is possible for the attacker with infinite

computational power. Hence, the cipher has to be used within its unicity distance to pro­

tect from such adversaries.

1.4 Importance of the Secret Key

The secret key is the most critical parameter of any keyed cryptographic algorithm. The

first known documentation of the importance of the key was by Kerckhoffs in 1883.

According to him, in a cryptosystem, the only parameter that should be kept secret is

the key; this is known as the Kerckhoffs’ principle. The security of a cryptographic

algorithm is quantified as the logarithmic measure of the fastest known attack against it.

If an algorithm provides n­bit security, the complexity of the fastest known attack will

be O(2n). Based on Kerckhoffs’ principle, key size defines the upper bound — due to

exhaustive key search — on the security of a well­designed symmetric­key primitive.

For an ideal cipher, the lower bound on its security is also defined by the key size, since

exhaustive key search is the fastest known attack against it.

Since symmetric­key algorithms rely on computational security, the time required

to recover the secret key using the exhaustive key search or brute force attack will be

exponentially proportional to the key size, under the assumption that the secret key was

chosen uniformly at random from the entire key space. Taking into account computa­

tional resources available today, Moore’s law [79] and advances in quantum computing,

most of the symmetric­key algorithms use keys of size ranging from 128 bits to 256 bits.

In contrast, PKC algorithms require longer keys to achieve equivalent security. When

the key size is small, the mathematical problems they are based on are faster to solve

than recovering the key using brute force. Therefore, to achieve 112­bit security, as rec­

ommended by NIST, an RSA key should be 2048 bits long, and an ECC key should be
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224 bits long [80].

If the entire key or a part of it can be guessed, an attacker will be able to recover it with

a complexity lesser than that of the exhaustive search. To preclude it, the keys generated

should be distributed uniformly at random. For this reason, keys used for cryptographic

applications are generated using cryptographically secure PRNGs — stream ciphers,

block ciphers in counter mode, CHFs or HMACs — which are instantiated using the

seeds generated from some random source having sufficient entropy [81, 82]. NIST

recommends the use of PRNGs based on CHF, HMAC and AES in counter mode for

key generation [81].

Whenever we discuss key generation in this thesis, the reader can assume that it uses

a cryptographically secure PRNG.

1.5 Lightweight Cryptography

The twenty­first century is witnessing the dawn of a new class of computing environ­

ments where interconnected resource­constrained devices work in unison to carry out

specific tasks. Examples of these environments include sensor networks, the Internet

of Things (IoT), healthcare devices, distributed control systems, cyber­physical systems

and automotive systems. Since conventional cryptographic algorithms are designed for

desktop / server environments, using them in constrained devices may not always be

possible due to the limited resources like CPU, memory and power. Owing to limited

processing power and unavailability of complex instructions, 4­, 8­ and 16­bit micro­

controllers require a high number of CPU cycles to execute conventional cryptographic

algorithms. Similarly, these devices may have minimal RAM and ROM, making them

unsuited to run an algorithmwith a large internal state or code size. Due to limited power

availability, RFID tags, which are one of the most constrained devices, require crypto­

graphic implementations with a very small amount of gate equivalents (GEs), and meet­

ing stringent power and timing requirements. In order to cater to the information security
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requirements of such highly constrained devices, lightweight cryptography (LWC) was

introduced.

The performance of an LWC algorithm is expressed in terms of latency, through­

put and power consumption. Likewise, its resource requirement is measured based on

the RAM, ROM and CPU register requirements for software applications, and the gate

area for hardware applications. Over the last decade, many LWC algorithms have been

designed, and they aim to achieve a tradeoff between the performance and the resource

requirement for a given level of security. Some of the symmetric­key ciphers discussed

in this thesis are meant for lightweight applications. That being the case, it will be appro­

priate to briefly discuss the commonly followed design principles of lightweight stream

ciphers and lightweight block ciphers.

1.5.1 Lightweight Stream Ciphers

Most of the lightweight stream ciphers in use today are based on a construction called

the Feedback Shift Register (FSR). An FSR of length l consists of l stages, which are

updated during each cycle as follows:

1: A new word w is computed using the contents of a predefined set of stages which

are often known as the taps.

2: The contents of each stage are shifted to their adjacent stages in such a way that

the oldest element in the array will be output.

3: The first stage, which is empty after the shift operation, will be updated with the

new element w.

An FSR that uses a linear function to compute w is known as the Linear Feedback Shift

Register (LFSR). If the function is nonlinear, we get the Nonlinear Feedback Shift Reg­

ister (NFSR). Another, but seldom used FSR is the Feedback with Carry Shift Register

(FCSR).
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Figure 1.10: An LFSR of length l whose taps and stages (at time t) are represented by
ci and st+i, respectively, where l − 1 ≤ i ≤ 0

LFSRs are more commonly used in constructing lightweight stream ciphers than the

other FSR variants. The ciphers A5/1 [17], E0 [16], Grain [83] andMICKEY v2 [84] are

some of the popular examples of LFSR­based lightweight constructions. The elements

of an LFSR belong to the field Fq, where the commonly used q equals 2k for some

integer k ≥ 1. If f(x), having coefficients in F2, is a primitive polynomial over F2k and

α is its primitive root, then the elements of F2k can be denoted as 0, 1, α, α2, . . . , α2k−2.

The feedback polynomial, which defines how an LFSR of length l is updated, can be

represented as xl +
l−1∑
i=0

ci · xi, where ci ∈ F2k ; ci ̸= 0 indicates the taps. The primitive

polynomial, primitive root and feedback polynomial collectively define an LFSR. The

schematic representation of an LFSR is given in Figure 1.10.

Though LFSRs are well­suited for hardware applications, they cannot be directly

used as keystream generators because of their linear behaviour. Also, an adversary can

quickly recover the internal state of an LFSR if she observes l output words. One clas­

sical method adopted to overcome this issue is to use a nonlinear combination function

with high nonlinearity and correlation immunity to generate the keystream word from

the outputs of multiple LFSRs. For example, the stream cipher E0 generates a keystream

bit by combining the outputs of four LFSRs using a nonlinear FSM. The stream cipher

Grain, which has a nonlinear function that mixes the outputs of an LFSR and an NFSR

to generate the keystream bit, is also based on a similar design.

In yet another design, the nonlinear filter function generates the keystream word

by mixing some of the bits of the LFSR; a well­known example is the cipher SNOW

3G [20]. Contrary to the methods mentioned above, there is another widely used strat­
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egy that does not require nonlinear functions. In such designs, LFSRs are irregularly

clocked to decimate their output sequences which will, in turn, introduce nonlinearity.

The ciphers A5/1 and MICKEY v2 use irregularly clocked LFSRs.

The lightweight stream cipher ChaCha [85], a variant of the stream cipher Salsa20

[86], follows a different design principle that makes it optimised for software. It gener­

ates a block of the keystream by hashing the key, nonce, and respective block number

using a hash function. The counter mode of operation, which helps to parallelise the

keystream generation, and the use of simple operations such as modular addition, bit­

wise rotation and XOR enable the cipher to perform efficiently in software.

1.5.2 Lightweight Block Ciphers

Compared to ordinary block ciphers, the lightweight ones have some of the following

features:

1: To reduce the memory usage, most of them support smaller block sizes and shorter

keys.

2: The round functions will be using simple operations which need less ROM, RAM

and CPU for software­oriented designs, and less gate area for hardware­oriented

designs. To achieve the required security level, lightweight algorithmsmight need

more number of rounds than the ordinary algorithms.

3: Theywill employ simple KSAs for the generation of subkeys to reduce the latency,

memory and power consumption. In some designs, the round functions used in

encryption will be reused to generate the subkeys.

4: They may have very similar encryption and decryption functions to reduce the

code size. This can be achieved either by using involutions in the design [87], or

by using encryption and decryption functions that are almost identical except for

the key schedule [88].

Owing to the influence of AES [30], many lightweight block ciphers are based on
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the SPN construction. Such ciphers rely on a component called the substitution­box

(S­box), which performs substitution, to add nonlinearity to the round functions. Since

implementing S­boxes as look­up tables require additional memory or hardware foot­

print, lightweight designs use S­boxes that are smaller than the ones used in ordinary

algorithms. The cipher PRESENT, which is an ISO/IEC lightweight block cipher stan­

dard, is a notable example of the SPN­based design optimised for the hardware [89, 90].

It can encrypt plaintext blocks of size 64 bits using an 80­ or 128­bit key, and uses a

4­bit S­box that can be efficiently implemented in hardware.

The other major category of lightweight block ciphers use FN­based constructions

that we discussed in Sect. 1.2.2. The block cipher KASUMI, the confidentiality algo­

rithm employed in 3Gmobile communications, is an 8­round Feistel cipher whose block

and key sizes are 64 and 128 bits, respectively [40]. A few other ciphers like CLEFIA

[91] (an ISO/IEC lightweight block cipher standard [90]), and HIGHT [92] (an ISO/IEC

block cipher standard [93]), use generalised FNs which have more than two branches.

In lightweight designs, the round function of an FN is usually built using a small SPN

as in Piccolo [94] and LBlock [95], or with simple arithmetic and logical operations, as

in SIMON [96].

Certain lightweight ciphers, irrespective of having SPN­ or FN­based constructions,

are designed only using the following simple operations: modular addition, rotation and

XOR. The designs based on ARX— standing for addition­rotation­XOR— depend on

modular addition as the only source of nonlinearity. According to Dinu et al., “ARX

and ARX­like designs are not only very fast, but also extremely small in terms of RAM

footprint and code size” [97]. As per the FELICS framework that benchmarked the

lightweight block ciphers on the microcontroller platforms 8­bit AVR, 16­bit MSP430,

and 32­bit ARM, the ARX­based lightweight block ciphers Chaskey [98], SPECK [96]

and LEA [99] have the most efficient software implementations on small processors

[97]. Besides block ciphers, ARX­based designs have been adopted in the construction

of stream ciphers such as Salsa20 [86] and ChaCha [85], and CHFs like the SHA­3
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finalists Skein [100] and BLAKE [101].

1.6 Cryptanalysis

Cryptanalysis is the study of cryptosystems and their implementations to detect weak­

nesses that compromise information security functions. Cryptanalytic attacks on

symmetric­key algorithms (including MAC algorithms) equip the adversary Eve to typ­

ically achieve one or more of the following goals.

1: Recovering the secret key.

2: Recovering the internal state.

3: Telling apart a cipher from an ideal or random source.

4: Obtaining plaintext information from the ciphertext.

5: Detecting structural weaknesses in algorithms.

6: Forging a valid MAC on an arbitrary message without the knowledge of the secret

key.

The brute­force attack or exhaustive key search, the most naive way of recovering

the key, defines the upper bound for the key recovery attacks on symmetric­key algo­

rithms. If enough ciphertext / plaintext bits are unavailable, a brute­force attack can

output incorrect keys. In the case of a stream cipher with a k­bit key, the probability that

an incorrect key that can generate an n­bit keystream exists is given by (2k − 1) · 2−n,

under the assumption that the keystream bits are distributed uniformly at random. There­

fore, an attacker with infinite computational power needs a t­bit keystream — obtained

from t­bit plaintext­ciphertext pair — such that 2k−t ≈ 0, to recover the key by exhaus­

tive key search. Applying the same concept to a block cipher whose key size and block

size are k and b bits, respectively, a brute­force attack is possible if l plaintext­ciphertext

pairs are available such that 2k−lb ≈ 0. The attack is also possible if the attacker knows
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l0 ciphertext blocks generated from some plaintext blocks containing redundancy, where

l0 is the unicity distance of the cryptosystem.

Stream ciphers and block ciphers might be also vulnerable to attacks that tell apart

the ciphers from an ideal cipher; such attacks are known as distinguishing attacks. A

classic example of a distinguishing attack is presented in [102]. Mantin and Shamir

found that the second byte of the keystream generated by RC4 equals zero with twice

the expected probability. The consequent distinguisher was strong enough to mount a

practical attack on RC4 in some broadcast applications.

Cryptanalysis can be broadly classified into three types: algorithmic cryptanalysis,

side­channel analysis and fault analysis. The former category, which has a weaker ad­

versarial assumption than the others, exploits the weaknesses in the cryptographic algo­

rithms. Side­channel analysis targets the weaknesses in cryptographic implementations

and exploits the information that leaks during their normal functioning. In side­channel

analysis, the adversary is often considered to be passive; i.e., she is merely able to col­

lect side­channel information by monitoring the encryption / decryption device or the

communication channel. Nevertheless, in the presence of an active adversary, who can

manipulate the internal state or operations of the algorithm, cryptographic implemen­

tations may be vulnerable to fault attacks. In this thesis, attacks belonging to all these

categories will be presented.

Depending on the ciphertext / plaintext data available to the adversary, cryptanalysis

of symmetric­key ciphers follow one of the following models:

1: Ciphertext­only attack. As the name suggests, these attacks are built solely using

the ciphertext and statistical information on the plaintext. As the entire ciphertext

is available to the attacker, this is considered a strong attack and weak algorithms

are vulnerable to such attacks.

2: (Adaptive) chosen ciphertext attack. In this attack model, Eve can decrypt ci­

phertexts of her choice. If her choice depends on the plaintext­ciphertext pairs

already collected, it is called adaptive chosen ciphertext attack.
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3: Known plaintext attack. This is the class of attacks in which the attacker has

access to some plaintexts and the corresponding ciphertexts. Such attacks are

possible only when some parts of the message are known to Eve.

4: (Adaptive) chosen plaintext attack. If Eve can encrypt plaintexts of her choice,

she will be able to construct such attacks. In adaptive chosen plaintext attacks,

new choices depend on the available plaintext­ciphertext pairs.

5: (Adaptive) chosen plaintext and (adaptive) chosen ciphertext attack. In this

attack model, the adversary can encrypt and decrypt chosen plaintexts and cipher­

texts, respectively.

A detailed discussion on various techniques used for cryptanalysis is not in the scope

of this thesis. Nevertheless, we briefly discuss a few popular techniques used for the

cryptanalysis of symmetric­key algorithms, which will help the reader comprehend the

thesis well.

1.6.1 Algorithmic Cryptanalysis

Algebraic attack. Ciphers whose operations can be represented as a system of

multivariate algebraic equations are found to be vulnerable to algebraic attacks. The

adversary solves the relations involving key bits and plaintext­ciphertext bits to recover

the secret key. The attack complexity depends on the difficulty in solving the system

of equations which, in turn, is determined by the number of equations and variables

involved and the amount of nonlinearity in the system. Therefore, to preclude algebraic

attacks, designers strive to make ciphers a large system of highly nonlinear equations.

The reader may refer to [103, 104, 105, 106] for more details on algebraic attacks.

Correlation attack. LFSRs are often coupled with nonlinear filter functions or

combination functions in stream cipher constructions. Correlation attacks, proposed by

Siegenthaler [107], are known plaintext attacks that exploit the input­output correlations
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in such functions to recover the internal states of the LFSRs. The correlations lead to

linear approximations of the nonlinear functions, and the attacker who finds linear rela­

tions between the internal state and the keystream bits with non­negligible probabilities

can construct a correlation attack. Therefore, filter or combination functions should

have high nonlinearity and correlation immunity to preclude correlation attacks.

Differential cryptanalysis. Differential cryptanalysis was introduced by Eli Biham and

Adi Shamir in the late 1980s as a new attack technique against DES­like cryptosystems

[108]. Let x and y be two variables such that y = f(x), where f is a nonlinear round

function. Differential cryptanalysis studies the statistical properties of the input­output

difference pair (∆x,∆y), where y ⊕ ∆y = f(x ⊕ ∆x), to examine if f behaves

ideally with respect to its distribution. In the ideal case, output differences have to be

distributed uniformly at random for a given input difference. The attacker’s objective is

to trace a path of highly probable input­output difference pairs across multiple rounds

of the cipher, termed as differential or differential characteristic. In the case of a

block cipher, the differential attack is a chosen plaintext attack — the attacker chooses

plaintext pairs corresponding to a given differential characteristic — that exploit the

non­uniform distribution of the differential to recover the key. Though stream ciphers

are also vulnerable to differential cryptanalysis, the attacks are based on related­key

or related­IV settings which are considered as weak attacks when compared to the

non­related­key/IV attacks [109]. Higher­order differential, truncated differential,

impossible differential, and boomerang attacks are the generalisations or extensions of

differential cryptanalysis used against block ciphers [110, 111, 112, 113].

Linear cryptanalysis. Differential and linear cryptanalysis are the two most widely

used techniques to analyse block ciphers. The discovery of linear cryptanalysis for

block ciphers is attributed to Matsui. In 1992, Matsui and Yamagishi presented a

known plaintext attack on the block cipher FEAL using a variant of this technique
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[114]. Later in 1993, Matsui constructed a linear attack in its current form on DES

[115]. In this attack, the adversary constructs probabilistic linear equations (called

linear approximations) relating plaintext, ciphertext and key bits. Given a linear

approximation that holds with high probability, the attacker finds a highly probable

solution for the key bits for some known plaintext­ciphertext pairs. The application

of linear cryptanalysis on stream ciphers was first presented by Golić in 1994 [116].

While attacking stream ciphers, the adversary aims to find some linear relations of the

non­uniformly distributed keystream bits. Such biased linear approximations are used

to distinguish the keystream sequence from a random sequence using statistical tests.

The distinguishing attack presented in this thesis follows a similar attack methodology.

Such distinguishing attacks can be used to reduce the uncertainty of unknown plaintexts

or recover the keystream generator’s internal state in certain cases.

Integral cryptanalysis. As the name indicates, this technique can be seen as a dual to

differential cryptanalysis. Differential cryptanalysis analyses the propagation of plain­

text differences through multiple rounds of a cipher. Whereas integral cryptanalysis,

proposed by Knudsen, explores the propagation of plaintext sums through a cipher

and is particularly applicable to block ciphers having bijective components [117].

The plaintext sum is computed by XORing all possible plaintexts with a given set of

constant bits. For instance, the attacker might use 16 chosen plaintexts whose all but 4

bits are the same. If the cipher is vulnerable to integral cryptanalysis, the XOR sum of

the corresponding ciphertexts can be predicted. The attacker exploits this information

to recover the secret key.

Though there are many more techniques to perform algorithmic cryptanalysis, we

are limiting to those used in this thesis.
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1.6.2 Side­Channel Analysis

In 1996, Kocher published the seminal paper on side­channel attacks, where he showed

that the implementations of Diffie­Hellman, RSA, DSS and some other cryptosystems

can be attacked by observing their execution time [118]. Since then, several attacks

on cryptographic implementations have been introduced. Even when a cryptosystem

is secure against algorithmic attacks, its implementation, be it software or hardware,

might be vulnerable to side­channel attacks. Such attacks analyse information leakage

inherent to the cryptographic implementations through different channels such as

power consumption, timing variations, electromagnetic and acoustic emanations,

data remanence, hardware vulnerabilities, and processor flags. Side­channel analysis

is of concern because it might lead to practical attacks on cryptosystems that are

algorithmically secure.

Power Analysis. One of the most efficient and commonly used side­channel attacks

is power analysis. It analyses the power consumption of a cryptographic device while

performing encryption. The power consumed by the device varies depending on the

instructions executed. Therefore, various parts of the encryption can be distinguished

just by observing the power consumption measurements. Simple Power Analysis (SPA),

which can reveal the sequence of operations in encryption, can be used to break the

unprotected implementations of RSA and DES whose execution path is data­dependent

[119]. Minor variations in the power consumption also occur due to the manipulation

of data during encryption. As it is difficult to interpret such variations directly from

a single power consumption measurement, Kocher et al. proposed a new technique

known as the Differential Power Analysis (DPA) [119]. It uses statistical analysis of a

large number of measurements recorded while encrypting multiple plaintexts to recover

the secret key. DPA is generally considered to be more powerful and harder to prevent

when compared to SPA.
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Timing Attacks. Certain cipher implementations might not perform encryption in

constant time. The variations in the timing for different inputs are mainly attributed

to cache hits,3 branching and conditional statements, processor instructions that run in

variable time, and performance optimisations. As mentioned earlier, Kocher introduced

the concept of timing attacks against such implementations [118]. He showed that fixed

Diffie­Hellman exponents and factor RSA keys could be recovered using timing attacks.

Electromagnetic Attacks. A side­channel attack that exploits correlations between

secret data and variations in the electromagnetic radiation emitted from an encryption

device is known as an electromagnetic attack. Similar to power consumption, electro­

magnetic radiation levels vary according to the operations performed. Therefore, cipher

implementations with data­dependent operations, such as the square­and­multiply

implementation of RSA, are vulnerable to electromagnetic attacks [120].

Acoustic Cryptanalysis. Acoustic emanations, typically caused by the voltage

regulation circuits of the CPU, are correlated with system activity. The concept of

acoustic cryptanalysis was first presented by Shamir and Tromer, who reported that

different RSA keys have different acoustic fingerprints [121]. In [122], Genkin et al.

demonstrated that 4096­bit RSA decryption keys could be extracted from laptop

computers, within an hour, by analysing the sound generated by the computer during

the decryption of some chosen ciphertexts. Electromagnetic and acoustic cryptanalysis

enable attacks on cryptographic devices even from a distance.

Attacks on Memory. Data remanence, the residual data retained in a digital memory

after its intended lifetime, is another side­channel that leaks critical information. The

data stored in Random Access Memory (RAM) chips are erased gradually on power

loss. The duration of data retention in RAMs can be increased significantly by cooling
3A cache hit occurs when the data accessed by an instruction is found in the cache memory of the

CPU, which stores copies of recently accessed data to serve them faster in future.
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them to very low temperatures [123]. This behaviour of SRAMs and DRAMs leads

to side­channel attacks, popularly known as cold boot attacks, which can be used to

recover the keys or secret internal states of the ciphers [124]. An attacker can extract

secret data from memory using malicious codes too. Hardware vulnerabilities of

modern processors such as Meltdown, Spectre and SplitSpectre enable a malicious

application to access the memory space of a different application and read its secrets

[125, 126, 127]. RAMBleed is another more recent exploit which can be used by

malicious codes to read some of the bits in any DDR3 and DDR4 DRAM memories

without accessing them [128].

Processor Flag Attacks. In [129], Kelsey et al. first proposed that processor flags

can be exploited to build side­channel attacks. Nearly every modern microprocessor

has the status register, a collection of flag bits that store information about the state

of the processors and information on operations performed by their ALUs [130]. The

side­channel attacks against Streebog [131], RC5 [129], Schnorr­based identification

and signature schemes [132], RSA and ECC based cryptosystems with exponent

randomization [133], IDEA [134] and Twofish [134] exploit the carry flag which is a

flag bit that indicates carry overflow in unsigned integer arithmetic. The side­channel

attacks presented in this thesis also depend on the information leakage through the carry

flag.

Countermeasures. Power analysis can be precluded by introducing noise into the power

measurements, equalising power consumption using dummy operations and choosing

operations that leak less information in their power consumption. In order to prevent

timing attacks, cryptographic implementations must not have operations that are tempo­

rally correlated to secret parameters. In the software implementations of cryptographic

algorithms, conditional branching statements must not be used and the cache state must

be normalised just before and just after the cryptographic operation to ensure constant­
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time execution. Masking secret inputs can be adopted to prevent attackers from know­

ing the inputs to specific functions like modular exponentiation. Similarly, processor

flags can also be masked using dummy operations to prevent attackers from exploit­

ing them. Providing tamper­proof physical shielding to cryptographic devices is also a

good measure to make various side­channel attacks infeasible. The reader may refer to

[135, 136, 137, 138] for more details on various countermeasures against side­channel

attacks.

1.6.3 Fault Analysis

An attack against a cryptographic implementation by an active adversary who injects

faults into the system is known as a fault attack. The adversary analyses the errors in

the output due to the fault injections to recover the secret internal state of the cipher.

Although it was known since the 1970s that electronic devices and microprocessors are

vulnerable to fault injections under specific extreme environments [139], intentional in­

jection of faults to break a cryptographic system was first discussed by Boneh et al. in

1997 [140]. The introduction of glitches on the clock signal and spikes in the input volt­

age level are two non­invasive techniques used to inject faults. An attacker can also rely

on optical fault injection techniques using laser beams or photo flashes if she chooses

to use semi­invasive techniques. The reader may refer to [141] for more details on the

techniques used to inject faults. Depending on the technique used to inject faults, differ­

ent fault models can be identified. These models tell about the number of bits affected

by the fault injection, type of the fault, control on the fault location and timing, and

duration of the fault. Fault analysis of a cipher often discusses the deterministic or sta­

tistical procedure to exploit the erroneous outputs due to the faults injected, assuming

that fault injections follow a specific fault model. The fault­assisted side­channel anal­

ysis presented in this thesis also focuses on analysing the errors to recover the secret

key.
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1.7 Motivation, Objective and Scope

The security claims of the cryptographic algorithms may not always be supported with

conclusive evidence or proof; furthermore, certain weaknesses in the design might have

also been overlooked. Third­party security evaluations help detect unforeseen vulner­

abilities in cryptographic algorithms / implementations and help ascertain the level of

confidence in their security.

Lightweight symmetric­key ciphers are gaining popularity, and many new designs

have been proposed recently. The (ultra­)lightweightWG family of stream ciphers [142]

and the SPECK family of lightweight block ciphers [96] are two such designs that are

considered to be potential candidates to secure lightweight applications like RFID de­

vices and 4G/5G networks. The former has been granted a US patent [142] and the

latter is an ISO standard for RFID devices [143]. The importance of these ciphers gave

us enough motivation to scrutinise them.

It was found that SPECK, which uses modular addition in its round function, is

vulnerable to carry flag attacks. Since HMAC­Streebog [144], which is a family of

MAC algorithms defined in the Russian cryptographic standard, uses modular addition,

we were motivated to analyse its security too. Despite the use of modular addition in

SPECK and HMAC­Streebog, to the best of our knowledge, there are no prior published

results analysing the resistance of unprotected implementations of these algorithms to

carry flag attacks.

We started the research by evaluating some of the pitfalls in probability calculations

related to cryptanalysis. The outcome of this study gave us more insights into how to

perform cryptanalysis without misjudging security aspects of the concerned algorithms.

Due to the reasons stated earlier, the following symmetric­key cryptographic algorithms

or their implementations were chosen for cryptanalysis: the (ultra­)lightweightWG fam­

ily of stream ciphers, the SPECK family of lightweight block ciphers and the HMAC­

Streebog family of MAC algorithms. Finally, we proposed protected implementations

of a family of stream ciphers to demonstrate some countermeasures to the software side­
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channel attacks that we had studied.

This research therefore had the following objectives:

1: To emphasise the importance of probability assumptions and computations in

cryptanalysis.

2: To perform algorithmic cryptanalysis of the (ultra­)lightweight WG family of

stream ciphers.

3: To perform side­channel analysis of the unprotected software implementations of

the SPECK family of lightweight block ciphers and the HMAC­Streebog family

of MAC algorithms.

4: To suggest ways to protect software implementations of the RCR ciphers with

detailed security and performance evaluations.

1.8 Outline of the Thesis

A brief introduction to the Chapters discussing the outcome of this research is provided

in this Section.

Chapter 2. Probability calculations for cryptanalysis have to be done with utmost care

to avoid misjudging security aspects of the concerned algorithms. In this Chapter, a

case study to highlight the importance of probability assumptions and computations in

cryptanalysis is presented.

The stream ciphers RCR­64 and RCR­32 designed by Sekar et al. [145] are the most

recent additions to the Py family of stream ciphers, originally designed by Biham et

al. [25]. The ciphers are among the fastest stream ciphers on software. To the best of

our knowledge, the only reported attacks on the ciphers are due to Ding et al. [146],

published in the Journal of Universal Computer Science. Our review of these alleged

attacks on the RCR ciphers shows that they are based on non­existent keystream biases
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stemming from flawed probability calculations [147]. The flawed computations by Ding

et al. and the non­existence of their keystream biases are established in this Chapter.

In the next two Chapters, we discuss some cryptanalytic results on lightweight

symmetric­key ciphers.

Chapter 3. In this Chapter, our attacks on a family of hardware­efficient lightweight

synchronous stream ciphers are presented.

The Welch­Gong (WG) family of stream ciphers include two subfamilies, which

we call WG­A and WG­B, of patented (ultra­)lightweight ciphers designed by Gong

et al. [142]. The Waterloo Commercialization Office, Canada, has included the WG­A

in an RFID anti­counterfeiting system [148] and has proposed the WG­B for securing

4G/5G networks [149]. The WG­A and WG­B ciphers support 80­ and 128­bit keys,

respectively. We detect input­output correlations in the nonlinear transformations used

by these ciphers. Exploiting these, we show distinguishing attacks that require, to

nearly ensure success, between 222.20 and 229.07 keystream samples for WG­A and not

more than 256.84 keystream samples for WG­B. We are not aware of any prior attacks

on these ciphers.

Chapter 4. The attacks presented in Chapter 3 are algorithmic. Whereas, in Chapters 4

and 5, we discuss side­channel attacks.

The side­channel analysis of SPECK — a family of software­efficient lightweight

block ciphers — is presented in this Chapter. SPECK is developed by Beaulieu et al. of

the NSA for the Internet of Things (IoT) [96]. It is an ARX­based design with a Feistel­

like structure which supports keys of size ranging from 64 bits to 256 bits. SPECK has

been standardised by ISO/IEC for radio frequency identification (RFID) devices [143].

It has drawn the attention of many cryptanalysts, and several cryptanalysis results have

been published.

In this Chapter, we present carry flag attacks on the full SPECK ciphers. Depending
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on the key size and block size, the complexities of our attacks, to nearly ensure success

in key recovery, vary from 259 time and 214 data to 2227 time and 262 data.

Chapter 5. Any discussion on symmetric­key algorithms will be incomplete without

MAC algorithms. In this Chapter, we present fault­assisted side­channel attacks on a

family of HMAC algorithms.

Streebog is a family of hash functions defined in the Russian cryptographic

standard GOST R 34.11–2012 [150]. HMAC–Streebog, which is defined in RFC

7836, is a Streebog based message authentication code [144]. It supports keys of size

ranging from 256 bits to 512 bits. We present fault–assisted side­channel attacks on

HMAC–Streebog–256 and HMAC–Streebog–512 that can recover the keys in real

time with 212.98 and 214.97 average number of fault injections, respectively, to ensure

95% success. The attacker is assumed to be able to simultaneously flip at the most 181

chosen bits of the inner hash if it is a 256–bit variant, and 361 chosen bits of the hash

otherwise. Compared to existing fault attacks on HMAC–Streebog, our attacks have a

larger temporal window for fault injection, target a more accessible location and cannot

be mitigated with output redundancy countermeasures. Some of the latest hardware

vulnerabilities make the HMAC–Streebog implementations vulnerable to our attacks.

Chapter 6. Following the discussions on cryptanalysis, we move on to the secure im­

plementation of symmetric­key ciphers. We evaluate the security of the stream ciphers

RCR–64 and RCR–32, and propose their protected implementations.

The synchronous stream ciphers RCR­64 and RCR­32 designed by Sekar, Paul and

Preneel [145] are strengthened variants of the ciphers TPy and TPypy (designed by

Biham and Seberry) [151], respectively. The RCR ciphers have remained unbroken

since they were published in 2007. In this Chapter, we present arguments that not

only support the designers’ security claims but suggest, in general, that the ciphers

are secure against several classes of cryptanalytic attacks. We find that the ciphers are
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best used with 256­bit keys and 384­bit IVs. We also suggest ways to protect software

implementations of the RCR ciphers against (cache­)timing and processor flag attacks.

Our performance evaluation suggests that the protected implementation of the RCR­64

encrypts long messages at speeds comparable to some of the fastest stream ciphers

available today. Consequently, we find that the RCR ciphers may be well suited for

PC­based applications in general and streaming audio / video applications in particular.

Chapter 7. In this Chapter, we give our concluding remarks and some interesting prob­

lems for future work.



Chapter 2

On the Security of the Stream Ciphers

RCR­64 and RCR­32

2.1 Introduction

The security bounds for cryptographic algorithms are generally determined after

investigating their resistance to several cryptanalytic techniques such as linear crypt­

analysis, differential cryptanalysis, integral cryptanalysis, correlation attacks, and so

on. In the process, we frequently invoke the Bayes’ theorem, assume that certain

events are independent / mutually exclusive, etc. It goes without saying that such

assumptions have to be justifiable. Disregarding the occurrence of certain events may

also yield erroneous results. Hence, probability calculations for cryptanalysis have to be

done with utmost care so that the security of the concerned algorithms are not misjudged.

The Py family of stream ciphers. The stream ciphers Py [25], Pypy [152], and Py6

[25], designed by Biham et al., are among the fastest eSTREAM Profile 1 candidates

[153, 154]. The designers later changed the key schedule algorithms of these ciphers to

produce strengthened variants, TPy, TPypy and TPy6, respectively [151]. As the new

44
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variants were still vulnerable to cryptanalysis,1 Sekar et al. proposed two new variants,

RCR­64 and RCR­32 [145]. All these ciphers are recommended for use with 256­bit

keys and 128­bit IVs. However, the size of the key may vary from 1 to 256 bytes (in

steps of a byte) and the size of the IV from 1 to 64 bytes (in steps of a byte). The Py

family of stream ciphers have been extensively analysed over time and RCR­64 and

RCR­32, the most recent additions to the family, are conjectured to be the strongest of

the lot.

Performance evaluation. The eBASC (ECRYPT Benchmarking of Stream Ciphers)

project [155] has evaluated the performances of a few stream ciphers, including the

TPy, TPypy and TPy6, on Intel Core i5­1030NG7 processor to encrypt 1536­byte,

4096­byte and much longer messages with 256­bit keys and the results are given in

Table 2.1. We find the performances of TPy, TPypy and TPy6 compararable to those

of Sosemanuk [156], an eSTREAM final portfolio cipher [157], and SNOW 2.0 [18],

an ISO/IEC keystream generator standard [19], and better than that of the AES [30]

in counter mode implemented without AES­NI instruction set [158]. Although the

performances of the RCR­64 and RCR­32 have not been evaluated by eBASC project,

it can be safely assumed that they will be marginally faster than the TPy and TPypy,

respectively, due to the absence of three operations—an array access, an addition and a

bitwise AND—per encryption round.

Flawed probability calculation. The Journal of Universal Computer Science published

a paper presenting related­key distinguishing attacks on the stream ciphers Py, Pypy,

TPy, TPypy, RCR­64 and RCR­32 [146]. To the best of our knowledge, the paper con­

tains the only known attacks on the RCR­64 and RCR­32. Our review of the attacks
1The designers do not explicitly state in [151] that their security claims for Py, Pypy and Py6 apply

to TPy, TPypy and TPy6, respectively. Even if the claims (that limit the number of keystream bytes to
264) are applicable, they do not specify the number of key/IV pairs that can be considered to construct
meaningful attacks. Even supposing that the 264 bound holds regardless of the number of key/IV pairs
used, the ciphers TPy and TPypy may still be seen as vulnerable to cryptanalysis (in an academic sense)
but not broken under the designers’ claims.
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reveal flaws in probability calculations, leading to the visualisation of biases where they

do not exist. This Chapter presents our findings in detail. A note is alsomade of potential

flaws in probability­based cryptanalysis.

Table 2.1: The performances of a few stream ciphers, including the AES in counter
mode, to encrypt 1536­byte, 4096­byte and much longer messages with 256­bit keys on
Intel Core i5­1030NG7 processor as measured by the eBASC project

Performance in cycles per byte to encrypt
Cipher 1536­byte message 4096­byte message long message

ChaCha8 [85] 0.38 0.29 0.29

Salsa20/8 [86] 0.50 0.37 0.35

ChaCha12 [85] 0.51 0.40 0.40

Salsa20/12 [86] 0.64 0.48 0.46

AESa [30] 0.62 0.54 0.49

ChaCha20 [85] 0.79 0.60 0.60

Salsa20/20 [86] 0.95 0.69 0.67

HC­256 [23] 19.31 8.49 1.98

Sosemanuk [156] 2.92 2.40 2.15

TPy [151] 6.26 3.82 2.24

SNOW 2.0 [18] 2.56 2.39 2.30

TPy6 [151] 4.40 3.19 2.42

CryptMT v3 [159] 4.29 2.98 2.45

TPypy [151] 7.59 4.93 3.41

AESb [30] 13.98 13.87 13.80

aAES in counter mode implemented using AES­NI instruction set [160].
bAES in counter mode implemented without AES­NI instruction set [161].

Organisation of the Chapter. The remaining Chapter is organised as follows. In

Sect. 2.2, we discuss cases where errors in probability assumptions or computations

have led or can potentially lead to flawed cryptanalysis. The analysis of the alleged

attacks on the RCR ciphers by Ding et al. is presented in Sect. 2.3. We conclude in

Sect. 2.4.
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2.2 Probability Assumptions and Computations in

Cryptanalysis

2.2.1 Independent Events

If the probabilities of two events A and B are known, their joint probability can be

computed as Pr(A ∩ B) = Pr(A) · Pr(B) when A and B are independent. If they are

dependent, then Pr(A ∩ B) = Pr(A | B) · Pr(B) or Pr(A ∩ B) = Pr(A) · Pr(B | A).

The assumption of independence is widely used in cryptanalysis to cascade the effects

of multiple events which are generally related to different rounds or state variables. In

many cases, it might be challenging to compute Pr(A | B), and one may assume that

A and B are independent. For instance, in the differential cryptanalysis [108] and lin­

ear cryptanalysis [115] on DES the differential and linear characteristics of the differ­

ent rounds of DES are cascaded assuming independence of certain events [162], which

is reasonable when the round keys are distributed uniformly at random. Harpes et al.

used the example of two 2­bit adders cascaded together to show that Matsui’s Piling­up

Lemma [115] computes probability erroneously when a certain assumption of indepen­

dence is invalid [163]. Therefore, without convincing evidence, two events must not be

assumed to be independent.

2.2.2 Pairwise Disjoint Events

In cryptanalysis, we may come across certain occasions where an event under consider­

ation (call it A) depends on several other events. If these events are pairwise mutually

exclusive, by simply adding their probabilities, we obtain Pr(A). For instance, the crypt­

analysis of the full Spritz stream cipher depends on the union of three pairwise disjoint

events that guarantee that the first two output bytes produced by the cipher are equal to

a certain value [164]. There may be scenarios where one has to assume mutual exclu­

sivity of events in order to compute a certain probability. Such an assumption has to be
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justifiable.

2.2.3 High Probability Events

In order to compute the probability of an event, it is very much necessary to identify all

the events influencing it. In cryptanalysis, it may not always be possible to identify all

such events due to the sheer complexity of the operations involved in mixing the ele­

ments of the internal state. For example, in the distinguishing attacks of [165] on the

stream cipher HC­256, some events were ignored as they were experimentally found to

occur with negligible probability when compared to events that were ultimately taken

into consideration. Nevertheless, the knowledge of high probability events allow us

to make reasonable approximations. For instance, let S1, S2 and S3 be three pairwise

disjoint events such that the occurrence of any of them results in the occurrence of an­

other event A. If Pr(S1) is much greater than Pr(S2) or Pr(S3), then it will evidently be

erroneous to compute Pr(A) without considering S1.

2.2.4 Uniformly Distributed Random Variables

Under the assumptions that the key is distributed uniformly at random, and that the

key scheduling algorithm mixes the key well into the internal state of the cipher, it is

generally assumed that the internal state, except for the constituent permutations, during

the encryption phase is also distributed uniformly at random. Based on this assumption,

the occurrence of biased outputs is examined. For example, let a, b and c be Boolean

variables such that c = a⊕b, and Pr(b = 0) ̸= 0.5. The assumption that Pr(a = 0) = 0.5

will mean that c is an unbiased random variable. If Pr(a = 0) ̸= 0.5 , then it follows

that Pr(c = 0) ̸= 0.5 . Even while analysing complex nonlinear functions, which may

be the case more often, one must be very careful to assume that its output is uniformly

distributed at random.
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2.3 The Alleged related­key Distinguishing Attacks by

Ding et al.

2.3.1 Specifications of the Py family of Stream Ciphers

Each member of the Py family of ciphers, including the variants RCR­64 and RCR­

32, is composed of three parts: a key setup algorithm, an IV setup algorithm and a

round function. The first two parts mix the secret key and the IV to generate an internal

state composed of a permutation P of 256 elements, 260­element array Y where each

element is a 32­bit word and a 32­bit variable s. The key/IV setup uses two intermediate

variables: a fixed permutation of 256 elements denoted by IP and a variableEIV whose

size is equal to that of the IV. The round function, which is executed iteratively, updates

the internal state and generates pseudorandom keystream bits. In order to roll an n­

element array S, the IV setup and the round function use the function rotate(·) that takes

the array {S[0], S[1], · · · , S[n−2], S[n−1]} as input and outputs {S[1], S[2], · · · , S[n−

1], S[0]}. The key setup algorithms of the Py, the Pypy, the TPy, the TPypy, the RCR­64

and the RCR­32 are identical (see Algorithm 1). As to where the ciphers differ can be

inferred from Table 2.2, Algorithm 2 and Algorithm 3. A visual representation of the

round function is shown in Figure 2.1. The details of the algorithms can also be found

in [25, 152, 151].

2.3.2 Description of Ding et al.’s Alleged Related­Key Attacks

Let k1 and k2 be two keys of size 256 bytes each such that, k1[16]⊕k2[16] = 1, k1[17] ̸=

k2[17] and k1[i] = k2[i] , for i ̸= 16, 17 and i < 256. Let us assume that k1 and k2 are

used with identical IVs to initialise the Py family of ciphers. When ki is used, (Y j
i , P

j
i ,

sji ) will be the internal state at the beginning of jth round of encryption, which generates

Zj
i as the second output word, for i = 1, 2. Let D denote the event Y 1

1 [i] = Y 1
2 [i], for

−3 ≤ i ≤ 12. The probability of occurrence ofD has been computed by Sekar et al. as
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2−28.4 [145]. Ding et al. claimed distinguishers for Py, Pypy, TPy, TPypy, RCR­64 and

RCR­32 based on the simultaneous occurrence of D and a few other events that they

identified.

Table 2.2: Notation for different parts of the ciphers Py, Pypy, TPy, TPypy, RCR­64 and
RCR­32

Py Pypy TPy TPypy RCR­64 RCR­32
Key setup K K K K K K
IV setup I1 I1 I2 I2 I2 I2

Round function R1 R2 R1 R2 R3 R4

Algorithm 1 Key setup: K
Require: A key, an IV and an initial permutation
Ensure: An array Y [−3,−2, ..., 256]

kb = size of the key k in bytes;
ivb = size of the IV in bytes;
L = -3;
H = 256;

s = IP[kb - 1];
s = (s << 8) | IP[(s ^ (ivb - 1)) & 0xFF];
s = (s << 8) | IP[(s ^ k[0]) & 0xFF];
s = (s << 8) | IP[(s ^ k[kb - 1]) & 0xFF];

for(j = 0; j < kb; j++)
{

s = s + k[j];
s0 = IP[s & 0xFF];
s = ROTL32(s, 8) ^ (u32) s0;

}

for(j = 0; j < kb; j++)
{

s = s + k[j];
s0 = IP[s & 0xFF];
s ^= ROTL32(s, 8) + (u32) s0;

}

/*Initialise the array Y*/
for(i = L, j = 0; i <= H; i++)
{

s = s + k[j];
s0 = IP[s & 0xFF];
Y[i] = s = ROTL32(s, 8) ^ (u32) s0;
j = j + 1 (mod kb);

}
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Algorithm 2 IV setup algorithms: I1 and I2
Require: The Y and the IV
Ensure: The arrays Y [−3,−2, ..., 256], P [0, 1, ..., 255] and the variable s

/*Create an initial permutation*/
ivb = size of IV in bytes; L = -3; H = 256;

v = IV[0] ^ ((Y[0] >> 16) & 0xFF);
d = (IV[1 (mod ivb)] ^ ((Y[1] >> 16) & 0xFF)) | 1;

for(i = 0; i < 256; i++)
{

P[i] = IP[v]; v += d;
}

/*Initialise s*/
s = ((u32) v << 24) ^ ((u32) d << 16) ^ ((u32) P[254] << 8)

^ ((u32) P[255]);
s ^= Y[L] + Y[H];

for(i = 0; i < ivb; i++)
{

s = s + IV[i] + Y[L + i];
s0 = P[s & 0xFF]; EIV[i] = s0;
s = ROTL32(s, 8) ^ (u32) s0;

}

/*Update EIV*/
for(i = 0; i < ivb; i++)
{

/*Skip the next step for I1*/
s += EIV[i + ivb - 1 (mod ivb)] + Y[H - i];
/*Skip the next step for I2*/
s += IV[i] + Y[H - i];
s0 = P[s & 0xFF]; EIV[i] += s0;
s = ROTL32(s, 8) ^ (u32) s0;

}

/*Update the rolling arrays and the variable s*/
for(i = 0; i < 260; i++)
{

x0 = EIV[0] = EIV[0] ^ (s & 0xFF);
rotate(EIV);
swap(P[0], P[x0]);
rotate(P);
/*Skip the next two steps for I1*/
s = ROTL32(s, 8) + Y[H];
Y[L] += s ^ Y[x0];
/*Skip the next step for I2*/
Y[L] = s = (s ^ Y[L]) + Y[x0];
rotate(Y);

}

s = s + Y[26] + Y[153] + Y[208];
if(s == 0) {s = (kb * 8) + ((ivb * 8) << 16) + 0x87654321;}
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Algorithm 3 Round functions: R1,R2,R3 and R4

Require: Y [−3,−2, ..., 256], P [0, 1, ..., 255] and a 32­bit variable s
Ensure: A pseudorandom output Z

swap(P[0], P[Y[185] & 255]);
rotate(P);

s = s + Y[P[72]] - Y[P[239]];
/*Skip the next step for R3 and R4*/
s = ROTL32(s, ((P[116] + 18) & 31));
/*Skip the next step for R1 and R2*/
s = ROTL32(s, 19);

/*Skip the next step for R2 and R4*/
Z ←− ((ROTL32(s, 25) ^ Y[256]) + Y[P[26]]);

Z ←− Z ∥ ((s ^ Y[-1]) + Y[P[208]]);

Y[-3]=(ROTL32(s, 14) ^ Y[-3]) + Y[P[153]];
rotate(Y);

Alleged Related­Key Distinguishing Attacks on RCR­64 and RCR­32

The formulae for the least significant bit (LSB) of the output words Z1
1 , Z2

1 , Z1
2 , and Z2

2

are as follows:

Z1
1(0) = s21(0) ⊕ Y 1

1 [−1](0) ⊕ Y 1
1 [P

2
1 [208]](0) , (2.1)

Z2
1(0) = s31(0) ⊕ Y 2

1 [−1](0) ⊕ Y 2
1 [P

3
1 [208]](0) , (2.2)

Z1
2(0) = s22(0) ⊕ Y 1

2 [−1](0) ⊕ Y 1
2 [P

2
2 [208]](0) , (2.3)

Z2
2(0) = s32(0) ⊕ Y 2

2 [−1](0) ⊕ Y 2
2 [P

3
2 [208]](0) . (2.4)

When event D occurs,

Y 1
1 [−1](0) = Y 1

2 [−1](0) , (2.5)

Y 2
1 [−1](0) = Y 2

2 [−1](0) . (2.6)

Let the event Y 1
1 [P

2
1 [208]](0) ⊕ Y 2

1 [P
3
1 [208]](0) ⊕ Y 1

2 [P
2
2 [208]](0) ⊕ Y 2

2 [P
3
2 [208]](0) = 0

be denoted byG. IfG1 andG2 denote the events P 2
1 [208] = P 3

1 [208]+1 and P 2
2 [208] =
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Figure 2.1: Visual representation of the round function of the Py family of ciphers, where
(Y j , P j , sj) and Zj are the internal state at the beginning of jth round and the output
word generated from it, respectively
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P 3
2 [208] + 1, respectively, we have:

Pr(G) ≈ Pr(G1 ∩G2)

≈ 2−16. (2.7)

From Algorithm 3, we know that:

s31 = ROTL32(s21 + Y 2
1 [P

3
1 [72]]− Y 2

1 [P
3
1 [239]], 19) , (2.8)

s32 = ROTL32(s22 + Y 2
2 [P

3
2 [72]]− Y 2

2 [P
3
2 [239]], 19) . (2.9)

If c1 = Y 2
1 [P

3
1 [72]] − Y 2

1 [P
3
1 [239]], c2 = Y 2

2 [P
3
2 [72]] − Y 2

2 [P
3
2 [239]], and δ(13) and γ(13)

represent the carry bits generated at the 13th bit­position (where LSB is the 1st bit) in

(2.8) and (2.9),2 respectively, we get:

s21(0) ⊕ s31(0) ⊕ s22(0) ⊕ s32(0) = s21(0) ⊕ s21(13) ⊕ s22(0) ⊕ s22(13) ⊕ c1(13) ⊕ c2(13) ⊕

δ(13) ⊕ γ(13) .

Let us define the events E, E1 and E2 as follows:

• E represents the event s21(0) ⊕ s31(0) ⊕ s22(0) ⊕ s32(0) = 0,

• E1 represents the event s21(0) ⊕ s21(13) ⊕ s22(0) ⊕ s22(13) ⊕ δ(13) ⊕ γ(13) = 0,

• E2 represents the event P 3
1 [72] = P 3

2 [72] = a and P 3
1 [239] = P 3

2 [239] = b, where

−3 ≤ a, b ≤ 11 and a ̸= b.

Under the assumption that s21 and s22 are distributed uniformly at random and, P 3
1 and

P 3
2 being permutations, Ding et al. computed the following:

Pr(E1) =
1

2
,

Pr(E2) = 2−23.7 .

2In the original paper, Ding et al. considered 19th bit as LSB after the rotation, instead of 13th bit.
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From Algorithm 3, we know that:

Y 1
1 [i] = Y 1

2 [i] =⇒ Y 2
1 [j] = Y 2

2 [j] ,

where− 3 ≤ i ≤ 12 and− 3 ≤ j ≤ 11 . (2.10)

Hence, when event D occurs, we get:

Pr(E) = Pr(E1 ∩ E2) ≈ Pr(E1) · Pr(E2) = 2−24.7 . (2.11)

Ding et al. assumed that Z1
1(0)⊕Z2

1(0)⊕Z1
2(0)⊕Z2

2(0) is distributed uniformly at random

when D ∩ G ∩ E does not occur. Hence, under the assumption that D,G and E are

independent events, it is obtained that:

Pr(Z1
1(0) ⊕ Z2

1(0) ⊕ Z1
2(0) ⊕ Z2

2(0) = 0)

= Pr(D ∩G ∩ E) +
1

2

(
1− Pr(D ∩G ∩ E)

)
= Pr(D) · Pr(G) · Pr(E) +

1

2

(
1− Pr(D) · Pr(G) · Pr(E)

)
=

1

2
(1 + 2−69.2) . (2.12)

The bias detected in Z1
1(0) ⊕ Z2

1(0) ⊕ Z1
2(0) ⊕ Z2

2(0) = 0 as per (2.12) yielded the alleged

related­key distinguishing attacks of [146] on RCR­64 and RCR­32.

Alleged Related­Key Distinguishing Attacks on Py, Pypy, TPy and TPypy

Event G, and equations (2.1)–(2.7), which were described in Sect. 2.3.2 for the ciphers

RCR­64 and RCR­32, are valid for the ciphers Py, Pypy, TPy and TPypy as well. The

ciphers Py, Pypy, TPy and TPypy differ from RCR­64 and RCR­32 in the update of s
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and, from Algorithm 3, we get:

s31 = ROTL32
(
s21 + Y 2

1 [P
3
1 [72]]− Y 2

1 [P
3
1 [239]],

P 3
1 [116] + 18 (mod 32)

)
, (2.13)

s32 = ROTL32
(
s22 + Y 2

2 [P
3
2 [72]]− Y 2

2 [P
3
2 [239]],

P 3
2 [116] + 18 (mod 32)

)
. (2.14)

Let e1 = Y 2
1 [P

3
1 [72]] − Y 2

1 [P
3
1 [239]], e2 = Y 2

2 [P
3
2 [72]] − Y 2

2 [P
3
2 [239]], d1 = 32 −

P 3
1 [116] + 18 (mod 32), d2 = 32−P 3

2 [116] + 18 (mod 32), and β(d1) and ε(d2) represent

the carry bits generated at the d1th bit­position in (2.13) and d2th bit­position in (2.14),

respectively.3 We get:

s21(0) ⊕ s31(0) ⊕ s22(0) ⊕ s32(0) = s21(0) ⊕ s21(d1) ⊕ s22(0) ⊕ s22(d2) ⊕ e1(d1) ⊕ e2(d2)⊕

β(d1) ⊕ ϵ(d2) .

Let us consider the following events:

• F represents the event s21(0) ⊕ s31(0) ⊕ s22(0) ⊕ s32(0) = 0,

• F1 represents the event d1 = d2,

• F2 represents the event s21(0) ⊕ s21(d1) ⊕ s22(0) ⊕ s22(d2) ⊕ β(d1) ⊕ ϵ(d2) = 0,

• F3 represents the event P 3
1 [72] = P 3

2 [72] = a and P 3
1 [239] = P 3

2 [239] = b, where

−3 ≤ a, b ≤ 11 and a ̸= b.

According to Ding et al.,

Pr(F1) = 2−5 ,

3In the original paper, Ding et al. considered ith bit as LSB after the rotation, instead of (32 − i)th
bit, where i = P 3

j [116] + 18 (mod 32) for j = 1, 2.
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Pr(F2) =
1

2
,

Pr(F3) = 2−23.7 .

Due to (2.10), when event D occurs, we get:

Pr(F ) = Pr(F1 ∩ F2 ∩ F3)

≈ Pr(F1) · Pr(F2) · Pr(F3)

≈ 2−29.7 . (2.15)

Ding et al. assumed that Z1
1(0)⊕Z2

1(0)⊕Z1
2(0)⊕Z2

2(0) is distributed uniformly at random

whenD ∩G∩F does not occur. Therefore, assuming thatD,G and F are independent

events, it is obtained that:

Pr(Z1
1(0) ⊕ Z2

1(0) ⊕ Z1
2(0) ⊕ Z2

2(0) = 0)

= Pr(D ∩G ∩ F ) +
1

2
(1− Pr(D ∩G ∩ F ))

= Pr(D) · Pr(G) · Pr(F ) +
1

2
(1− Pr(D) · Pr(G) · Pr(F ))

=
1

2
(1 + 2−74.2) . (2.16)

Based on the bias detected in (2.16), Ding et al. built their alleged related­key distin­

guishers for Py, Pypy, TPy and TPypy.

2.3.3 Observations on Ding et al.’s Alleged Attacks

RCR­64 and RCR­32

Let us define the following:

t1 := s21(0) ⊕ s21(13) ⊕ s22(0) ⊕ s22(13) ⊕ δ(13) ⊕ γ(13) ,

t2 := c1(13) ⊕ c2(13) ,
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t3 := Y 1
1 [−1](0) ⊕ Y 2

1 [−1](0) ⊕ Y 1
2 [−1](0) ⊕ Y 2

2 [−1](0) ,

t4 := Y 1
1 [P

2
1 [208]](0) ⊕ Y 2

1 [P
3
1 [208]](0) ⊕ Y 1

2 [P
2
2 [208]](0) ⊕ Y 2

2 [P
3
2 [208]](0) ,

Ẑ := Z1
1(0) ⊕ Z2

1(0) ⊕ Z1
2(0) ⊕ Z2

2(0) .

From (2.1)–(2.4), we get:

Ẑ = t1 ⊕ t2 ⊕ t3 ⊕ t4 .

It is reasonable to assume that t1 and τ := t2⊕ t3⊕ t4 are independent random variables.

Let Pr(τ = 0) = w and from Sect. 2.3.2, we have:

Pr(t1 = 0) = Pr(E1) =
1

2
.

Therefore,

Pr(t1 ⊕ τ = 0) = Pr(t1 = 0) · Pr(τ = 0) + Pr(t1 = 1) · Pr(τ = 1)

=
1

2
w + (1− 1

2
)(1− w)

=
1

2
. (2.17)

Equation (2.17) proves that Ẑ is not a biased variable. In [146], the authors wrongly

assumed that Pr(Ẑ = 0) = 0.5 in the absence ofD∩G∩E despite the fact that Ẑ equals

0 when the event D ∩G ∩ E occurs (see (2.12)). The probabilities of Ẑ = 0 given the

occurrence of different combinations of events are listed in Table 2.3. If Pr(D) = p,

Pr(G) = q and Pr(E) = r, assuming that D,G and E are independent events, the

probability of Ẑ = 0 can be computed as follows:

Pr(Ẑ = 0) = p · q · r + p · (1− q) · (1− r) +
(1− p) · (1− q) · r

2

+
(1− p) · q · (1− r)

2
+

(1− p) · (1− q) · (1− r)

2

+
(1− p) · q · r

2
. (2.18)
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In (2.18), all the events causing Ẑ = 0 are taken into consideration and since r = 0.5 ,

under the assumption that s21(0)⊕ s31(0)⊕ s22(0)⊕ s32(0) is distributed uniformly at random,

Pr(Ẑ = 0) equals 0.5 as computed in (2.17).

Table 2.3: The probabilities p1, p2, p3 and p4, where p1 = Pr(t3 = 0 | X), p2 = Pr(t4 =
0 | X), p3 = Pr(t1 ⊕ t2 = 0 | X) and p4 = Pr(Ẑ = 0 | X); X represents different
combinations of the events D,G and E

Event X p1 p2 p3 p4

D ∩G ∩ E 1 1 1 1
D ∩G ∩ E 1 1 0 0
D ∩G ∩ E 1 0 1 0
D ∩G ∩ E 1 0 0 1
D ∩G ∩ E 0.5 1 1 0.5
D ∩G ∩ E 0.5 1 0 0.5
D ∩G ∩ E 0.5 0 1 0.5
D ∩G ∩ E 0.5 0 0 0.5

Py, Pypy, TPy and TPypy

Let us define the following in addition to t3, t4 and Ẑ defined in Sect. 2.3.3:

t5 := s21(0) ⊕ s21(d1) ⊕ s22(0) ⊕ s22(d2) ⊕ β(d1) ⊕ ϵ(d2) ,

t6 := e1(d1) ⊕ e2(d2) ,

where e1, e2, d1 and d2 are defined in Sec. 2.3.2. From (2.1)–(2.4), we find that:

Ẑ = t5 ⊕ t6 ⊕ t3 ⊕ t4 .

Let Pr(σ = 0) = w, where σ = t6 ⊕ t3 ⊕ t4. From Sect. 2.3.2, we have:

Pr(t5 = 0) = Pr(F2) =
1

2
.
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Under the assumption that t5 and σ are independent random variables, we get:

Pr(t5 ⊕ σ = 0) = Pr(t5 = 0) · Pr(σ = 0)

+ Pr(t5 = 1) · Pr(σ = 1)

=
1

2
w + (1− 1

2
)(1− w)

=
1

2
. (2.19)

The attacks on Py, Pypy, TPy and TPypy also had errors in the probability calculations,

similar to those described in the Sect. 2.3.3, due to which Pr(Ẑ = 0) as calculated by

Ding et al. is different from the correct result in (2.19). Ding et al. wrongly assumed

that Pr(Ẑ = 0) is equal to 0.5 in the absence ofD ∩G∩ F , in spite of Ẑ being equal to

0 when the event D ∩ G ∩ F occurs. The probabilities of Ẑ = 0 given the occurrence

of different combinations of events are listed in Table 2.4. Under the assumption that

D,G and F are independent events, probability of Ẑ = 0 can be computed using (2.18),

where Pr(D) = p, Pr(G) = q and Pr(F ) = r. Since r = 0.5, under the assumption that

s21(0)⊕ s31(0)⊕ s22(0)⊕ s32(0) is distributed uniformly at random, we get the same result for

Pr(Ẑ = 0) as computed in (2.19).

Table 2.4: The probabilities p1, p2, p3 and p4, where p1 = Pr(t3 = 0 | Y ), p2 = Pr(t4 =
0 | Y ), p3 = Pr(t5 ⊕ t6 = 0 | Y ) and p4 = Pr(Ẑ = 0 | Y ); Y represents different
combinations of the events D,G and F

Event Y p1 p2 p3 p4

D ∩G ∩ F 1 1 1 1
D ∩G ∩ F 1 1 0 0
D ∩G ∩ F 1 0 1 0
D ∩G ∩ F 1 0 0 1
D ∩G ∩ F 0.5 1 1 0.5
D ∩G ∩ F 0.5 1 0 0.5
D ∩G ∩ F 0.5 0 1 0.5
D ∩G ∩ F 0.5 0 0 0.5
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2.4 Conclusions

In this Chapter, we have presented a detailed review of the related­key distinguishing

attacks on the stream ciphers Py, Pypy, TPy, TPypy, RCR­64 and RCR­32 proposed

in a paper published in the Journal of Universal Computer Science. To the best of our

knowledge, these are the only claimed attacks on the RCR­64 and RCR­32. The review

of the attacks revealed certain flaws in probability calculations which led the authors to

visualise biases where they do not exist. In the process, we also discussed about some

of the potential flaws in probability­based cryptanalysis.



Chapter 3

Distinguishing Attacks on

(Ultra­)lightweight WG Ciphers

3.1 Introduction

Lightweight ciphers. Recently there has been a considerable surge in the popularity

of lightweight ciphers due to the advent of Internet of Things. Such ciphers typically

use LFSRs, especially in constrained hardware environments. To augment the linear

complexity of the keystream, LFSR­based ciphers use balanced nonlinear functions —

the resulting keystream generator is called a nonlinear filter generator and well­known

examples are the generators of the WG family of ciphers.

The WG family of ciphers. The WG ciphers are based on the WG transformations

[166] which are balanced nonlinear filter functions. The possibility of using the WG

transformations for cryptographic purposes was first explored by Gong et al. [167].

The transformations are defined over finite fields of orders 25, 27, 28, 216 and 229; the

corresponding ciphers are respectively denoted by WG­5 [168], WG­7 [169], WG­8

[170], WG­16 [171] andWG­29 [172]. Beginning with WG­29 (a well­received entrant

to the ECRYPT eSTREAM project [173] designed by Nawaz et al.), the WG ciphers

62
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have been studied extensively, over a period spanning more than a decade. Table 3.1

lists the ciphers and results of their best known security evaluations.

The WG­A and the WG­B,1 designed by Gong et al., are subfamilies of the WG

family and comprise of patented (# US8953784 B2) variants of the WG­8 and WG­16,

respectively [142]. WG­A has 3 constituent ultra­lightweight ciphers, each correspond­

ing to a unique decimation factor or d. Each of these ciphers supports an 80­bit key and

an 80­bit IV. Likewise, WG­B comprises of 31 lightweight ciphers, each using a 128­bit

key and a 128­bit IV. The designs of WG­A and WG­B are remarkably simple and the

ciphers are well suited for hardware applications. At TechConnect World Innovation

Conference 2015, the Waterloo Commercialization Office had exhibited an RFID

system for anti­counterfeiting enabled with WG­A [148]. Furthermore, information

available through the website of the Waterloo Commercialization Office suggests that

WG­B is proposed for securing 4G/5G networks [149]. Consequently, there appear to

be good chances for these ciphers to be commercially deployed on a wide scale.

Contributions of this work. Linear distinguishing attacks on WG­A and WG­B

families of ciphers are presented in this Chapter. The attacks on WG­A are highly

practical, requiring fewer than 229.07 keystream samples for nearly guaranteed success,

and have been experimentally verified. Our attacks on WG­B, however, are not very

practical and require up to 256.84 keystream samples to nearly guarantee success. The

security claim of the designers of WG­A and WG­B suggests that these ciphers offer

better security compared to their predecessors (this is attributed to the decimation

factor). Table 3.1 shows that our attacks refute this claim.2

Organisation of the Chapter. The remaining Chapter is organised as follows. Sec­

tion 3.2 describes the ciphers. We present our motivational observations for WG in
1We follow this nomenclature to distinguish between the patented and unpatented variants of WG­8

and WG­16.
2To facilitate comparisons, we reasonably assume that the success rates of the attacks on WG­16 and

WG­B are equal.
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Table 3.1: Attacks on the WG family of stream ciphers

Key size IV size Type of Success
Year Cipher (in bits) (in bits) attack Requirements rate (%)

2005 WG­29 a 80 80 key recovery
[174]

231.3 chosen
IVs, O(232.69)
time

99.95

2007 WG­29 b

80,
96,
112,
128 c

32, 64
or same
as key
size c

key recovery
[175]

O(245.04) data,
O(265.71) time 99.99

2012 WG­7 80 81 distinguishing
[176] O(213.5) data 99.99

2012 WG­7 80 81 key recovery
[176]

O(219.38) data,
O(227) time 100

2014 WG­8 80 80 key recovery
[177]

221 chosen IVs,
O(223.29) time 99.99

2015 WG­29 b 128 128 key recovery
[178]

O(289) time,
O(248) memory 63.21

2015 WG­5
(d = 7) 80 80 key recovery

[179]
O(215) data,
O(230) time 100

2015 WG­5
(d = 15) 80 80 key recovery

[179]
O(215) data,
O(230) time 100

2015 WG­7 80 81 key recovery
[179]

O(214) data,
O(225) time 100

2015 WG­8 80 80 key recovery
[179]

O(222) data,
O(248) time 100

2015 WG­16 128 128 key recovery
[179]

O(263) data,
O(2106) time 100

2016 WG­A 80 80
distinguishing

(This
Chapter)

up to 233.46

bits, less than
O(229.07) time

99.99

2016 WG­B 128 128
distinguishing

(This
Chapter)

up to 261.87

bits, less than
O(256.84) time

99.99

aECRYPT eSTREAM Phase 1 version
bECRYPT eSTREAM Phase 2 version
cattack works for any combination of key size and IV size

Sect. 3.3. The biases in the keystream distribution are computed in Sect. 3.4 and our dis­

tinguishing attacks are presented in Sect. 3.5. In Sect. 3.6, we discuss how the remaining

members of the WG family fare against linear distinguishing attacks. We conclude in

Sect. 3.7.
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3.2 Specifications of the Ciphers

3.2.1 WG­A

The ultra­lightweight cipher WG­A uses an 80­bit key K and an 80­bit initialization

vector IV . The internal state of WG­A consists of a 20­stage LFSR defined over the

finite field F28 , whose (k + 1)th stage at time i is denoted by sA[i+ k]. The cipher uses

an 8­bit nonlinear WG transformation WA : F28 → F2. The 256 elements of the finite

field F28 are generated by the primitive polynomialRA(x) = x8+x4+x3+x2+1 over

F2. Let ω be a root of the primitive polynomial. Any element of F28 can be represented

as an 8­bit binary vector (a7a6 . . . a0) corresponding to a7ω
7 + a6ω

6 + · · · + a0.

The feedback polynomial of the LFSR is given by lA(x) = x20 + x11 + x9 + ω38,

where ω38 corresponds to the binary vector (10010100). The WG transformation,

whose input is the 20th LFSR stage, is comprised of a permutation PA and a trace

function TA. The permutation takes an 8­bit input x and outputs qA(x⊞8 1)⊞8 1, where

qA(x) = x⊞8 x
9 ⊞8 x

57 ⊞8 x
73 ⊞8 x

71. Likewise, the trace function takes an 8­bit input

x and outputs x ⊞8 x
2 ⊞8 x

22 ⊞8 · · · ⊞8 x
27 . The trace function acts on PA(x) to yield

WA(x) as TA(PA(x)). For better security of the cipher, the designers propose to have xd

instead of x, where d is the decimation factor, as the input to the WG transformation

[142]. Although the value of d is not mentioned in the patent document, Mandal et al.

identify three values (13, 19 and 61) as “optimal” choices [180]. These values, they

argue, impart the best cryptographic properties such as maximum algebraic degree,

maximum algebraic immunity, largest possible nonlinearity and smallest possible

additive correlation to the output of WA. Denote by WG­Ad the cipher corresponding

to d. Then, WG­Ad operates in two phases: initialization and keystream generation

(see Algorithms 4 and 5). The keystream generation process of WG­Ad is shown in

Figure 3.1.
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Algorithm 4 Initialization of WG­Ad

Require: A key and an IV
Ensure: An LFSR {sA[40 + 19], sA[40 + 18], . . . , sA[40 + 0]}

1: for i = 0 to 9 do
2: sA[2i] = (IV(8i+3), IV(8i+2), IV(8i+1), IV(8i), K(8i+3), K(8i+2), K(8i+1), K(8i));
3: sA[2i+1] = (IV(8i+7), IV(8i+6), IV(8i+5), IV(8i+4), K(8i+7), K(8i+6), K(8i+5), K(8i+4));
4: endfor
5: for i = 0 to 39 do
6: sA[i+ 20] = sA[i+ 11]⊕ sA[i+ 9]⊕ (sA[i]⊡8 ω

38)⊕ PA((sA[i+ 19])d);
7: endfor

Algorithm 5 Keystream generator of WG­Ad

Require: An LFSR {sA[19], sA[18], . . . , sA[0]}
Ensure: A pseudorandom output zA

1: i = 0;
2: do until enough keystream is generated
3: zA(i) = WA((sA[i+ 19])d);
4: sA[i+ 20] = sA[i+ 11]⊕ sA[i+ 9]⊕ (sA[i]⊡8 ω

38);
5: i← i+ 1;

Figure 3.1: Keystream generation of WG­Ad; exp computes (sA[19])d
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3.2.2 WG­B

The structure of the lightweight cipher WG­B is very similar to that of WG­A. Here, the

key K and the initialization vector IV are of length 128 bits each. The LFSR has 32

stages (which are denoted by sB[·]) and is defined over the finite field F216 . The elements

of F216 are generated by β, a primitive root of the polynomial RB(x) = x16 + x5 + x3 +

x2 + 1 over F2. The feedback polynomial is given by lB(x) = x32 + x13 + x3 + β2 + 1.

The permutation is of 16­bit values and is given by PB(x) = qB(x ⊞16 1) ⊞16 1, where

qB(x) = x⊞16 x
2049 ⊞16 x

2111 ⊞16 x
2113 ⊞16 x

63552. The trace function and the nonlinear

filter function are from F216 to F2 and are given by:

TB(x) = x⊞16 x
2 ⊞16 x

22 ⊞16 · · ·⊞16 x
215 ,

WB(x) = TB(PB(x)) .

As for WG­A, optimal decimation factors (31 in total) have also been identified for

WG­B in [180] and WG­Bd refers to the cipher corresponding to d. It operates in two

phases: initialization and keystream generation (see Algorithms 6 and 7). Figure 3.2

shows the keystream generation of WG­Bd.

Algorithm 6 Initialization of WG­Bd

Require: A key and an IV
Ensure: An LFSR {sB[64 + 31], sB[64 + 30], . . . , sB[64 + 0]}

1: for i = 0 to 15 do
2: sB[i] = (IV(8i+7), IV(8i+6), . . . , IV(8i), K(8i+7), K(8i+6), . . . , K(8i));
3: sB[i+ 16] = sB[i];
4: endfor
5: for i = 0 to 63 do
6: sB[i+ 32] = sB[i+ 13]⊕ sB[i+ 3]⊕ (sB[i]⊡16 (β

2 + 1))⊕ PB((sB[i+ 31])d);
7: endfor
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Figure 3.2: Keystream generation of WG­Bd; exp computes (sB[31])d

Algorithm 7 Keystream generator of WG­Bd

Require: An LFSR {sB[31], sB[30], . . . , sB[0]}
Ensure: A pseudorandom output zB

1: i = 0;
2: do until enough keystream is generated
3: zB(i) = WB((sB[i+ 31])d);
4: sB[i+ 32] = sB[i+ 13]⊕ sB[i+ 3]⊕ (sB[i]⊡16 (β

2 + 1));
5: i← i+ 1;

3.3 Motivational Observation

The sizes of the inputs to WA and WB render an exhaustive search over the input space

feasible. Performing the search, we detect d independent input­output correlations in the

WG transformations. The bitwise correlation probabilities for WA(x
61) and WB(x

157)

are listed in Tables 3.2(a) and 3.3(a), respectively. Similarly, the probabilities that

WA(x
61) = (x⊡8 ω

38)(i) andWB(x
157) = (x⊡16 (β

2 + 1))(i), for several values of i, are

listed in Tables 3.2(b) and 3.3(b), respectively. All the results presented in this Chapter

are based on the polynomial basis representation of the field elements.

Tables 3.2(a), 3.2(b), 3.3(a) and 3.3(b) suggest that the WG transformations can be
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Table 3.2: WG: Probabilities that (a)WA(x
61) = x(i) and (b) WA(x

61) = (x ⊡8 ω
38)(i),

for several values of i

(a)

i Pr
(
WA(x

61) = x(i)

)
0 0.5 + 2−4.68

1 0.5 + 2−6.00

2 0.5 + 2−5.00

3 0.5− 2−6.00

4 0.5− 2−5.00

5 0.5− 2−4.00

6 0.5 + 2−6.00

7 0.5 + 2−6.00

(b)

i Pr
(
WA(x

61) = (x⊡8 ω
38)(i)

)
0 0.5− 2−5.00

1 0.5 + 2−4.00

2 0.5− 2−7.00

3 0.5 + 2−4.00

4 0.5 + 2−7.00

5 0.5− 2−6.00

6 0.5 + 2−6.00

7 0.5− 2−3.83

Table 3.3: WG: Probabilities that (a)WB(x
157) = x(i) and (b)WB(x

157) = (x⊡16 (β
2 +

1))(i), for several values of i

(a)

i Pr
(
WB(x

157) = x(i)

)
0 0.5 + 2−9.79

1 0.5 + 2−12.4

2 0.5 + 2−10.8

3 0.5 + 2−8.96

4 0.5 + 2−10.2

5 0.5− 2−13.0

6 0.5 + 2−14.0

7 0.5 + 2−10.4

8 0.5− 2−9.75

10 0.5− 2−9.48

11 0.5 + 2−9.19

12 0.5 + 2−11.7

13 0.5− 2−9.00

14 0.5− 2−11.0

15 0.5 + 2−10.5

(b)

i Pr
(
WB(x

157) = (x⊡16 (β
2 + 1))(i)

)
0 0.5− 2−10.8

1 0.5 + 2−10.1

2 0.5− 2−9.17

3 0.5− 2−9.48

4 0.5− 2−9.48

5 0.5 + 2−13.0

6 0.5 + 2−8.51

7 0.5− 2−13.0

8 0.5− 2−7.91

10 0.5− 2−13.0

11 0.5 + 2−13.0

12 0.5 + 2−13.0

13 0.5− 2−9.42

14 0.5 + 2−10.1

15 0.5 + 2−10.1
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linearly approximated — using this, we state and prove Theorems 1 and 2.

Theorem 1. If the conditions

WA(x
d) = x(i) , (3.1)

WA(x
d) = (x⊡8 ω

38)(i) , (3.2)

are satisfied for any i ∈ {0, 1, . . . , 7}, then the keystream of WG­Ad satisfies zA(t+1) ⊕

zA(t−8) ⊕ zA(t−10) ⊕ zA(t−19) = 0 for t ≥ 19.

Proof. The recurrence relation of the constituent LFSR of WG­Ad can be deduced from

its feedback polynomial as:

sA[t+ 20] = sA[t+ 11]⊕ sA[t+ 9]⊕ (sA[t]⊡8 ω
38) , for t ≥ 0. (3.3)

From (3.3), we get:

sA[t+ 20](i) = sA[t+ 11](i) ⊕ sA[t+ 9](i) ⊕ (sA[t]⊡8 ω
38)(i) , (3.4)

for any i ∈ {0, 1, . . . , 7}, t ≥ 19. Substituting (3.1) and (3.2) in (3.4) yields:

WA((sA[t+ 20])d) = WA((sA[t+ 11])d)⊕WA((sA[t+ 9])d)⊕WA((sA[t])
d) , (3.5)

for t ≥ 19. Since zA(t) = WA((sA[t+ 19])d), (3.5) reduces to:

zA(t+1) ⊕ zA(t−8) ⊕ zA(t−10) ⊕ zA(t−19) = 0 , for t ≥ 19.

The proof completes.
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Theorem 2. If the conditions

WB(x
d) = x(i) , (3.6)

WB(x
d) = (x⊡16 (β

2 + 1))(i) , (3.7)

are satisfied for any i ∈ {0, 1, . . . , 15}, then the keystream of WG­Bd satisfies zB(t+1) ⊕

zB(t−18) ⊕ zB(t−28) ⊕ zB(t−31) = 0 for t ≥ 31.

Proof. The LFSR of WG­Bd is given by the following recursion:

sB[t+ 32] = sB[t+ 13]⊕ sB[t+ 3]⊕ (sB[t]⊡16 (β
2 + 1)) , for t ≥ 0. (3.8)

For the ith bit, (3.8) becomes:

sB[t+ 32](i) = sB[t+ 13](i) ⊕ sB[t+ 3](i) ⊕ (sB[t]⊡16 (β
2 + 1))(i) , (3.9)

for any i ∈ {0, 1, . . . , 15} , t ≥ 31. Substituting (3.6) and (3.7) in (3.9), we get:

WB((sB[t+ 32])d) = WB((sB[t+ 13])d)⊕WB((sB[t+ 3])d)⊕WB((sB[t])
d) , for t ≥ 31.

(3.10)

Since zB(t) = WB((sB[t+ 31])d), (3.10) reduces to:

zB(t+1) ⊕ zB(t−18) ⊕ zB(t−28) ⊕ zB(t−31) = 0 , for t ≥ 31.

This completes the proof.
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3.4 Bias Estimation

Using the results of Sect. 3.3, we proceed to compute Pr(ẑA = 0) and Pr(ẑB = 0), where

ẑA = zA(t+1) ⊕ zA(t−8) ⊕ zA(t−10) ⊕ zA(t−19) , t ≥ 19 ,

ẑB = zB(t+1) ⊕ zB(t−18) ⊕ zB(t−28) ⊕ zB(t−31) , t ≥ 31 .

3.4.1 Biases in the Keystream of WG­A61

Let us define the Boolean variables Y1, Y2, Y3, Y4 and Y5 as follows:

Y1 = WA((sA[t+ 20])d)⊕ sA[t+ 20](i) ,

Y2 = WA((sA[t+ 11])d)⊕ sA[t+ 11](i) ,

Y3 = WA((sA[t+ 9])d)⊕ sA[t+ 9](i) ,

Y4 = WA((sA[t])
d)⊕ (sA[t]⊡8 ω

38)(i) ,

Y5 = zA(t+1) ⊕ zA(t−8) ⊕ zA(t−10) ⊕ zA(t−19) ,

for any i ∈ {0, 1, . . . , 7}, t ≥ 19. From Theorem 1, we construct the Boolean truth table

given in Table 3.4.

Let Pr
(
WA(x

d) = x(i)

)
= pi and Pr

(
WA(x

d) = (x⊡8 ω
38)(i)

)
= qi. We get:

Pr(Y1 = 0) = Pr(Y2 = 0) = Pr(Y3 = 0) = pi , (3.11)

Pr(Y4 = 0) = qi , (3.12)

Pr(Y5 = 0) = Pr(ẑA = 0) . (3.13)

We assume that the events corresponding to Y1, Y2, Y3 and Y4 are independent and the

events corresponding to the rows of the truth table given in Table 3.4 are mutually ex­
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Table 3.4: Truth table that satisfies the relation between the Boolean variables Y1, Y2, Y3, Y4
and Y5

Y1 Y2 Y3 Y4 Y5

0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

clusive. Then, the truth table given in Table 3.4 and (3.11)–(3.13) yield:

Pr(ẑA = 0) = p3i qi + 3(1− pi)
2piqi + 3p2i (1− pi)(1− qi) + (1− pi)

3(1− qi) . (3.14)

A simple application of the Matsui’s Piling­up Lemma [115] also leads to (3.14).

The value of Pr(ẑA = 0) varies with i and the probability for which |Pr(ẑA = 0)−0.5|

is maximised is considered as its best estimation. The values of pi and qi for d = 61 are

listed in Tables 3.2(a) and 3.2(b), respectively. Among the available choices of i, the

following linear approximations, corresponding to i = 5, maximise the bias.

WA(x
61) ≈ x(5) ,

WA(x
61) ≈ (x⊡8 ω

38)(5) .

Since Pr
(
WA(x

61) = x(5)

)
= 0.5−2−4 and Pr

(
WA(x

61) = (x⊡8 ω
38)(5)

)
= 0.5−2−6,
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the best estimation of the probability that ẑA equals zero is 0.5 + 2−15.

3.4.2 Biases in the Keystream of WG­B157

If Pr
(
WB(x

d) = x(i)

)
= pi and Pr

(
WB(x

d) = (x⊡16 (β
2 + 1))(i)

)
= qi then Pr(ẑB =

0) is again given by the RHS of (3.14). The values of pi and qi for d = 157 are listed in

Tables 3.3(a) and 3.3(b), respectively. If the keystream bits are generated by WG­B157 ,

the probability that ẑB equals zero is estimated to be 0.5−2−33.36 based on the following

linear approximations:

WB(x
157) ≈ x(3) ,

WB(x
157) ≈ (x⊡16 (β

2 + 1))(3) .

3.4.3 Improvements to the Bias Estimations

The probabilities Pr(ẑA = 0) and Pr(ẑB = 0) of Sections 3.4.1 and 3.4.2 were calcu­

lated, in each case, with one of the input bits of the WG transformations. Since multiple

input bits of WA and WB are correlated to the corresponding output bits, we explore

the possibility to obtain a better estimation of the probabilities by combining input bits.

The probabilities Pr
(
WA(x

61) =
⊕

i∈S x(i)

)
and Pr

(
WA(x

61) =
⊕

i∈S (x⊡8 ω
38)(i)

)
,

where S ⊆ {0, 1, . . . , 7} for WG­A61 and equivalently for WG­B157, were experimen­

tally calculated with arbitrary choices of S. The correlation probabilities which further

improved the estimated keystream biases of WG­A61 and WG­B157 are given below.

Pr(WA(x
61) =

⊕
i∈S1

x(i)) = 0.5− 2−3.83 , (3.15)

Pr(WA(x
61) =

⊕
i∈S1

(x⊡8 ω
38)(i)) = 0.5 + 2−4 , (3.16)

Pr(WB(x
157) =

⊕
i∈S2

x(i)) = 0.5 + 2−6.83 , (3.17)

Pr(WB(x
157) =

⊕
i∈S2

(x⊡16 (β
2 + 1))(i)) = 0.5− 2−8 , (3.18)
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Table 3.5: Probabilities that (a) ẑA = 0 and (b) ẑB = 0, for each of the WG­Ad and
WG­Bd ciphers

(a) WG­Ad

d Pr(ẑA = 0)
13 0.5− 2−9.25

19 0.5 + 2−12.68

61 0.5− 2−12.49

(b) WG­Bd

d Pr(ẑB = 0) d Pr(ẑB = 0)

157 0.5− 2−25.49 3419 0.5− 2−26.48

409 0.5− 2−25.74 3449 0.5− 2−25.62

451 0.5− 2−25.21 3581 0.5− 2−25.59

469 0.5 + 2−26.52 4411 0.5− 2−26.19

1057 0.5 + 2−25.36 4681 0.5 + 2−26.17

1187 0.5− 2−26.20 4789 0.5− 2−26.56

1327 0.5− 2−26.43 5213 0.5 + 2−26.23

1393 0.5 + 2−25.55 6043 0.5 + 2−26.03

1397 0.5− 2−25.29 7673 0.5− 2−25.04

1771 0.5 + 2−25.51 7771 0.5− 2−26.19

1933 0.5 + 2−25.38 10651 0.5− 2−26.32

2137 0.5− 2−24.01 10667 0.5− 2−25.38

2251 0.5 + 2−24.90 13631 0.5− 2−25.99

2473 0.5− 2−26.09 14327 0.5− 2−25.66

2741 0.5− 2−25.07 32767 0.5 + 2−26.57

3223 0.5− 2−25.86

where S1 = {0, 3, 5, 6} and S2 = {1, 3, 5, 6, 8, 9, 14, 15}. Assigning the probabilities

of (3.15) and (3.16) respectively for pi and qi, (3.14) yields Pr(ẑA = 0) = 0.5− 2−12.49

for WG­A61. Similarly, the assignments pi = 0.5 + 2−6.83 and qi = 0.5 − 2−8 yield

Pr(ẑB = 0) = 0.5− 2−25.49 for WG­B157. The WG­A and WG­B families are restricted

to ciphers corresponding to the optimal d; the values of Pr(ẑA = 0) and Pr(ẑB = 0) for

all these ciphers are listed in Tables 3.5(a) and 3.5(b), respectively.

3.5 Attack Complexities

In this Section, we compute the complexities of our distinguishing attacks on WG­A

and WG­B using the results of Sect. 3.4. Let n denote the number of ẑA’s available to

the attacker, D′ denote the distribution of Z :=
∑

n ẑA, p′ = Pr(ẑA = 0), D denote

the distribution of Z given that WG­A61 is an ideal cipher and p = 0.5. If the ẑA’s are

independent and identically distributed random variables (i.i.d.), then Z has a binomial
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distribution. The means (µ′, µ) and standard deviations (σ′, σ) of the distributions D′,

D are given by: µ′ = np′, µ = np, σ′ =
√
np′(1− p′) and σ =

√
np(1− p).

If n is large (a commonly used rule of thumb is that np > 5 and n(1− p) > 5), one

can approximate each binomial distribution with the normal distribution with the same

mean and standard deviation. LetN (µ, σ2) and N (µ′, σ′2) be the normal distributions

corresponding to D and D′, respectively. If µ > µ′ (resp. µ < µ′) and µ − 3.62σ >

µ′ + 3.62σ′ (resp. µ + 3.62σ < µ′ − 3.62σ′), the attacker can confirm that ẑA’s follow

the distribution N (µ′, σ′2) with 0.9999 confidence level.3 Given this, if |µ′ − µ| >

3.62(σ′+σ)⇒ n > 13.1/(p′− 0.5)2 = 228.69, the cipher WG­A61 can be distinguished

from an ideal cipher with 99.99% success rate and 0.01% false positive rate. Similarly,

254.69 keystream samples (ẑB) are required to distinguish WG­B157 from an ideal cipher,

with a success probability of 0.9999. In order to generate the keystream samples ẑA

and ẑB, in the worst case, the attacker collects 21 keystream bits and 33 keystream bits,

respectively per (K, IV ) pair (but actually 4 bits will suffice). The data complexities of

our distinguishing attacks on the other members of the WG­A and WG­B families are

respectively listed in Tables 3.6(a) and 3.6(b)—in each case, the success rate is 99.99%.

3.5.1 Experimental Verification

From Table 3.6(a), it is clear that the distinguishing attacks on WG­A are of practical

complexities. In order to verify our analysis, the attacks on WG­A13, WG­A19 and WG­

A61 were simulated. In each case, the keystream bits, as per the data requirement given in

Table 3.6(a), were generated from 220 (K, IV ) pairs chosen uniformly at random with

each pair generating 103 keystream bits and the required probability was computed.4

This process was repeated 104 times. The mean probabilities for WG­A13, WG­A19 and

WG­A61 were found to be 0.5 − 2−9.40, 0.5 + 2−15.10 and 0.5 − 2−12.51, respectively.
3The cumulative distribution function of the normal distribution gives the value 0.9999 at µ+3.62σ.
4In order to compute the time complexity of our distinguishing attacks we assume that the attacker

collects one keystream sample per (K, IV ) pair. It is reasonable to expect the results of our simulations to
agree with simulations performed with 230 (K, IV ) pairs chosen uniformly at random and one keystream
sample per (K, IV ) pair.
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Table 3.6: Data requirements of our attacks (corresponding to 0.9999 success probabil­
ity) on the WG­Ad and WG­Bd ciphers

(a) WG­Ad

d log2(# samples)

13 22.20

19 29.07

61 28.69

(b) WG­Bd

d log2(# samples) d log2(# samples)

157 54.69 3419 56.66
409 55.19 3449 54.95
451 54.13 3581 54.89
469 56.76 4411 56.09
1057 54.43 4681 56.06
1187 56.11 4789 56.82
1327 56.57 5213 56.16
1393 54.8 6043 55.78
1397 54.3 7673 53.78
1771 54.73 7771 56.09
1933 54.47 10651 56.35
2137 51.74 10667 54.47
2251 53.51 13631 55.70
2473 55.9 14327 55.03
2741 53.85 32767 56.84
3223 55.43

The theoretical and experimental results for WG­A13 and WG­A61 agree very well; the

reason why the agreement is not as pronounced in the case of WG­A19 is being investi­

gated.

3.6 Discussion

In [176], Orumiehchiha et al. report a linear distinguishing attack, that is similar to

our attacks, on WG­7. Our investigations, in fact, show that every member of the WG

family, with the sole exception of the WG­29, is vulnerable to such linear attacks. The

low correlation immunity and the low resilience of the WG transformations allow us to

identify linear approximations of the kind provided in Sect. 3.4.3.

For WG­29, the input size of the WG transformation is too large to perform an ex­

haustive search over the input space using a general purpose computer. Nawaz et al.

report that it is 1­order resilient and can be approximated by linear functions [172].
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Therefore, the possibility of the existence of a set, similar to the set S of Sect. 3.4.3, that

renders WG­29 vulnerable to linear distinguishing attacks cannot be eliminated.

3.7 Conclusions

In this Chapter, we presented distinguishing attacks on the stream ciphers WG­A

and WG­B. To nearly guarantee success, the attacks require between 222.20 and 229.07

keystream samples for WG­A, and fewer than 256.84 keystream samples for WG­B.

Let TA,ini and TA,kga respectively denote the run­times of the initialization algorithm

and keystream generation algorithm of WG­A. Then, assuming that one sample is col­

lected per (K, IV ) pair, our attacks on the WG­A ciphers each requires at the most

229.07(TA,ini + 21 · TA,kga) time.5 Likewise, our attacks on the WG­B ciphers each re­

quires at the most 256.84(TB,ini+33·TB,kga) time, where TB,ini and TB,kga are the respective

run­times of the initialization algorithm and keystream generation algorithm of WG­B.

For a success rate of 60%, the attacks on WG­A and WG­B respectively require not

more than 221.47 and 249.24 keystream samples, and equivalent time. To the best of our

knowledge, these are the first attacks on the WG­A as well as the WG­B.

The low nonlinearity and the low correlation immunity of the WG transformations

appear to be the main causes of these attacks. As pointed out in [170] and [181],

increasing the number of tap positions of the LFSRs used in the WG ciphers may

increase the complexity of the distinguishing attacks. For instance, if there are 9 tap

positions instead of 3 in the LFSR of WG­A61, our attack will require 262.65 keystream

samples for a success rate of 99.99%. Nevertheless, to preclude these attacks, we

recommend using filter functions having good correlation immunity.

5An inherent assumption is that the decimation factor has no bearing on the run­time of the cipher.



Chapter 4

Side­Channel Analysis of SPECK

4.1 Introduction

The SPECK family of ciphers. SPECK is a family of lightweight block ciphers

designed by Beaulieu et al. of the NSA “as an aid for securing applications in very

constrained environments where AES may not be suitable” [96]. The design principle

to use basic operations such as modular addition, bitwise XOR and circular shifts has

made them remarkably simple and highly flexible across the platforms. SPECK has 10

constituent ciphers, each corresponding to a unique combination of key size and block

size. The key size varies from 64 bits to 256 bits whereas the block size ranges from

32 bits to 128 bits. The use of modular addition operation for nonlinearity has made

SPECK well optimised for software applications. The ISO/IEC specifies a crypto suite

for SPECK for their air interfaces standards for RFID devices [143]. To be used on

low­end Android Go devices, Google added SPECK to Linux Kernel 4.17 [182] but

eventually it was removed from Linux Kernel 4.20 and subsequent versions [183, 184].

Related works. Given the possibility for widespread deployment in lightweight appli­

cations, SPECK has been studied extensively during the recent years. In 2014, Abed

et al. presented differential attacks on 10, 12, 15, 15 and 16 rounds of SPECK ciphers

79
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with block sizes 32, 48, 64, 96, and 128 bits, respectively [185]. They also reported

rectangle attacks which could work on 11 and 18 rounds of SPECK ciphers with 64­

and 256­bit keys, respectively [185]. In the same year, Biryukov et al. also proposed

differential cryptanalysis of reduced­round SPECK which could be used to attack 16

rounds of SPECK ciphers with a block size of 64 bits [186]. Later, Dinur published an

improved differential cryptanalysis of SPECK which increased the number of rounds

that can be attacked by 1, 2, or 3, for 9 out of 10 reduced­round members of the family,

while significantly improving the complexity of the previous best­known attack on the

remaining reduced­round member [187].

The first known attacks on full SPECK ciphers were by Tupsamudre et al. who

presented a differential fault analysis on SPECK which recovers the n­bit subkey of

the final round using n/3 bit faults on an average [188]. Tupsamudre et al.’s differential

fault attacks were further improved byHuo et al., whose attacks required amore practical

random fault model and lesser number of fault injections compared to the earlier attacks

[189]. In 2015, Yuan et al. reported the first known linear cryptanalysis on reduced­

round SPECK ciphers [190]. In 2016, Fu et al. proposed differential attacks on reduced­

round SPECK ciphers with block sizes 48, 64, 96 and 128 bits, which were better than

the earlier differential attacks in terms of the number of rounds attacked [191]. The

differential attacks were further improved by Song et al. by increasing the number of

rounds that can be attacked for ciphers with block sizes 96 and 128 bits, and reducing

the attack complexities in the remaining cases [192]. In 2016, Feng et al. published fault

attacks on SPECK ciphers which were better than the earlier attacks of the same type

[193].

In 2017, Liu et al. proposed a SAT / SMT model for rotational­XOR cryptanalysis

in ARX primitives and used it to present distinguishers on reduced­round SPECK with

block sizes 32 and 48 bits which have better probabilities than the previously known

differential characteristics [194]. In 2019, Ge et al. reported correlation power anal­

ysis on unprotected software implementations of SPECK ciphers [195]. In the same
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year, Hou et al. presented a tool to perform automated differential fault analysis on

the software implementations of block ciphers and used the same to attack the imple­

mentations of SPECK ciphers [196]. Reduced­round SPECK ciphers were subjected

to a few more attacks during the years 2019 and 2020 such as impossible differential

cryptanalysis, differential cryptanalysis, integral cryptanalysis and linear cryptanalysis

[197, 198, 199, 200, 201, 202, 203].

A comparative analysis of the best­known key recovery attacks on the SPECK

ciphers in chronological order, including the attacks presented in this Chapter, is listed

in Table 4.1. The first parameter used to compare the attacks is the number of rounds

of SPECK that can be targeted; greater the number of rounds, better is the attack.

Among the attacks that target the same number of rounds, the best will be the one that

requires the minimum number of fault injections, and have the minimum data and time

complexities. It can be seen from Table 4.1 that the number of rounds targeted by the

best­known non­implementation attacks ranges from 14 to 25 for different members

of the SPECK family [192]. All the attacks on the full SPECK ciphers target their

implementations, and the attacks presented in this Chapter are the best among them, as

far as we know.

Processor flag cryptanalysis. In [129], Kelsey et al. introduced processor flag crypt­

analysis, a new class of side­channel attacks. Nearly every modern microprocessor has

the status register, a collection of flag bits that store information about the state of the

processors and information on operations performed by their ALUs [130]. Carry flag

is one such flag bit that indicates carry overflow in unsigned integer arithmetic. For

instance, when two unsigned integers are added, the carry flag is set (to 1) if a carry is

generated by the addition at the most significant bit position and the flag is cleared (i.e.,

0) otherwise.

In 2000, the first known attack that exploits the carry flag was presented by Kelsey

et al. on RC5 [129]. Later in 2002, Gomuffłkiewicz et al. presented attacks on IDEA
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Table 4.1: Comparative analysis of the best­known key recovery attacks (with a success
rate of 99.99%) on the SPECK ciphers in chronological order

Block size Key size # rounds Attack
(in bits) (in bits) attacked / total requirements Year

32 64

11 / 22 230.1 CPs, 246.7 time 2014 [185]
14 / 22 231 CPs, 263 time 2014 [187]
22 / 22 6 faulty bits1, 248 time 2014 [188]
22 / 22 5 faults1, 248 time 2015 [189]
14 / 22 230.47 CPs, 262.47 time 2016 [192]
22 / 22 214 data2, 259 time 2020 (This Chapter)

48 72

12 / 22 245 CPs, 245.3 time 2014 [185]
12 / 22 243 CPs, 243 time 2014 [186]
14 / 22 241 CPs, 265 time 2014 [187]
22 / 22 8 faulty bits1, 248 time 2014 [188]
22 / 22 5 faults1, 248 time 2015 [189]
15 / 22 246 CPs, 270 time 2016 [191]
15 / 22 245.31 CPs, 269.31 time 2016 [192]
22 / 22 222 data2, 263 time 2020 (This Chapter)

48 96

12 / 23 245 CPs, 245.3 time 2014 [185]
12 / 23 243 CPs, 243 time 2014 [186]
15 / 23 241 CPs, 289 time 2014 [187]
23 / 23 8 faulty bits1, 272 time 2014 [188]
23 / 23 5 faults1, 272 time 2015 [189]
16 / 23 246 CPs, 294 time 2016 [191]
16 / 23 245.31 CPs, 293.31 time 2016 [192]
23 / 23 222 data2, 287 time 2020 (This Chapter)

64 96

15 / 26 261 CPs, 261.1 time 2014 [185]
16 / 26 264 CPs, 273 time 2014 [186]
18 / 26 261 CPs, 293 time 2014 [187]
26 / 26 11 faulty bits1, 264 time 2014 [188]
26 / 26 6 faults1, 264 time 2015 [189]
19 / 26 263 CPs, 295 time 2016 [191]
19 / 26 261.56 CPs, 293.56 time 2016 [192]
26 / 26 230 data2, 283 time 2020 (This Chapter)

64 128

15 / 27 261 CPs, 261.1 time 2014 [185]
16 / 27 264 CPs, 273 time 2014 [186]
19 / 27 261 CPs, 2125 time 2014 [187]
27 / 27 11 faulty bits1, 296 time 2014 [188]
27 / 27 6 faults1, 296 time 2015 [189]

1Faults are induced in the last round.
2Number of encryptions are assumed to be well below the birthday bound.
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Block size Key size # rounds Attack
(in bits) (in bits) attacked / total requirements Year

64 128
20 / 27 263 CPs, 2127 time 2016 [191]
20 / 27 261.56 CPs, 2125.56 time 2016 [192]
27 / 27 230 data2, 2115 time 2020 (This Chapter)

96 96

15 / 28 289 CPs, 289.1 time 2014 [185]
16 / 28 285 CPs, 285 time 2014 [187]
28 / 28 16 faulty bits1, 248 time 2014 [188]
28 / 28 7 faults1, 248 time 2015 [189]
19 / 28 288 CPs, 288 time 2016 [191]
20 / 28 295.94 CPs, 295.94 time 2016 [192]
28 / 28 246 data2, 275 time 2020 (This Chapter)

96 144

16 / 29 290.9 CPs, 2135.9 time 2014 [185]
17 / 29 285 CPs, 2133 time 2014 [187]
29 / 29 16 faulty bits1, 296 time 2014 [188]
29 / 29 7 faults1, 296 time 2015 [189]
20 / 29 288 CPs, 2136 time 2016 [191]
21 / 29 295.94 CPs, 2143.94 time 2016 [192]
29 / 29 246 data2, 2123 time 2020 (This Chapter)

128 128

16 / 32 2116 CPs, 2111.1 time 2014 [185]
17 / 32 2113 CPs, 2113 time 2014 [187]
32 / 32 22 faulty bits1, 264 time 2014 [188]
32 / 32 8 faults1, 264 time 2015 [189]
22 / 32 2120 CPs, 2120 time 2016 [191]
23 / 32 2125.35 CPs, 2125.35 time 2016 [192]
32 / 32 262 data2, 299 time 2020 (This Chapter)

128 192

18 / 33 2125.9 CPs, 2182.7 time 2014 [185]
18 / 33 2113 CPs, 2177 time 2014 [187]
33 / 33 22 faulty bits1, 2128 time 2014 [188]
33 / 33 8 faults1, 2128 time 2015 [189]
23 / 33 2120 CPs, 2184 time 2016 [191]
24 / 33 2125.35 CPs, 2189.35 time 2016 [192]
33 / 33 262 data2, 2163 time 2020 (This Chapter)

128 256

18 / 34 2125.9 CPs, 2182.7 time 2014 [185]
19 / 34 2113 CPs, 2241 time 2014 [187]
34 / 34 22 faulty bits1, 2192 time 2014 [188]
34 / 34 8 faults1, 2192 time 2015 [189]
24 / 34 2120 CPs, 2248 time 2016 [191]
25 / 34 2125.35 CPs, 2253.35 time 2016 [192]
34 / 34 262 data2, 2227 time 2020 (This Chapter)
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and Twofish [134]. These attacks exploited the Hamming weight of the sequence of

carry bits and the authors conjectured that simple power analysis can be used to extract

this information. Subsequently, in 2008, Fouque et al. presented carry flag attacks

on public key implementations of RSA and ECC based cryptosystems with exponent

randomisation countermeasure [133]. They demonstrated that the carry flag can be

detected by studying the electromagnetic side­channel of the implementation using

differential power analysis. In 2009, Fouque et al. presented another carry flag attack

which could recover the secret keys used in public key schemes such as DSA and

ECDSA signature schemes, and Schnorr and GPS authentication and signature schemes

[132]. In order to detect the carry, they injected a fault during the computation of the

carry using methods like glitch injection, clock speed up or laser fault injection. The

most recent carry flag attack, which is on Streebog, was presented by Sekar in 2015

[131].

Contributions of this work. SPECK is a cipher of importance as it is an ISO standard

for RFID devices and a potential candidate to secure lightweight applications. This

gave us enough motivation to examine its security. After unsuccesfully trying several

cryptanalytic methods to analyse SPECK, it was eventually found that SPECK is vul­

nerable to carry flag attacks. This technique, originally proposed by Kelsey et al. [129],

is fairly well­known and thoroughly explored in a few papers [131, 132, 133, 134].

Hence, we were motivated to further examine the vulnerability of SPECK to this class

of attacks. Despite the use of modular addition in the round function of SPECK, to

the best of our knowledge, there are no published results analysing the resistance of

unprotected SPECK implementations to carry flag attacks. Our attacks, that work on

the full ciphers, at the best recover the key in 259 time with 214 data corresponding

to a success rate of 99.99%. The only other full­round attacks on SPECK are due to

[188], [189] and [193], however, these are based on much stronger assumptions. Our

attack model uses a weak assumption that the attacker can either detect the carry flag
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at the end of encryption or key expansion, or detect the bit­flips in the carry flag after

the modular addition in the final round. This makes our attacks more feasible when

compared to the fault attacks of [188, 189, 193]. The complexities of our key recovery

attacks for a success rate of 99.99% are given in Table 4.1.

Organisation of the Chapter. The remaining Chapter is organised as follows. Sec­

tion 4.2 describes the ciphers. The motivational observations for SPECK are presented

in Sect. 4.3. Our attacks on the encryption phase and key expansion phase of SPECK

are presented in Sect. 4.4 and Sect. 4.5, respectively. The methods to detect the carry

flag, scope of improving the attack complexities and countermeasures are discussed in

Sect. 4.6. We conclude in Sect. 4.7.

4.2 Specifications of the Ciphers

4.2.1 SPECKm,n

The lightweight block cipher SPECKm,n uses an n­bit key K, and has a block size of

m bits and word size of m
2
bits. The SPECKm,n encryption consists of r rounds and

the (i + 1)th round function is given by Eki(ai, bi) =
(
((ai ≫ α) ⊞(m

2
) bi) ⊕ ki,

(((ai ≫ α)⊞(m
2
) bi)⊕ ki)⊕ (bi ≪ β)

)
, where ki is the(i+ 1)th round key of size m

2

bits, ai and bi are the m
2
­bit inputs of the (i+1)th round, and α and β are round constants.

The inverse of the (i+ 1)th round function, which will be used for decryption, is given

byDki(ai+1, bi+1) =
(
((ai+1⊕ki)⊟(m

2
) (ai+1⊕bi+1) ≫ β) ≪ α, (ai+1⊕bi+1) ≫ β

)
,

where ai+1 and bi+1 are the m
2
­bit outputs of the (i + 1)th round. The (i + 1)th round

function of SPECKm,n is shown in Figure 4.1. There are 10 choices for the pair (m,

n) and the parameters r, α and β corresponding to each of them are given in Table 4.2.

SPECKm,n operates in 3 phases: key expansion, encryption and decryption.

Key expansion: The key schedule algorithm takesK as input and generates the subkeys

k0, k1, . . . , kr−1.
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ai

≫ α

(m2 )

ki

ai+1

bi

≪ β

bi+1

Figure 4.1: The (i+ 1)th round of SPECKm,n

Table 4.2: Parameters of SPECKm,n

(m,n) r α β

(32, 64) 22 7 2
(48, 72) 22 8 3
(48, 96) 23 8 3
(64, 96) 26 8 3
(64, 128) 27 8 3
(96, 96) 28 8 3
(96, 144) 29 8 3
(128, 128) 32 8 3
(128, 192) 33 8 3
(128, 256) 34 8 3
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Algorithm 8 Key schedule of SPECKm,n

Require: K
Ensure: The subkeys k0, k1, . . . , kr−1

1: k0 = K(m
2
−1) ∥ K(m

2
−2) ∥ . . . ∥ K(0);

2: w = 2n
m
;

3: for i = 0 to w − 2 do

4: li = K( (i+2)m
2

−1)

∥∥∥∥K( (i+2)m
2

−2)

∥∥∥∥ . . . ∥∥∥∥K( (i+1)m
2 );

5: endfor
6: for i = 0 to r − 2 do
7: (li+w−1, ki+1)← Ei(li, ki);
8: endfor

Encryption: The encryption algorithm takes as inputs k0, k1, . . . , kr−1 and the plaintext

block P1 ∥ P2 and generates the ciphertext block C1 ∥ C2 — P1, P2, C1 and C2 are
m
2
­bit words.

Algorithm 9 Encryption of SPECKm,n

Require: The subkeys k0, k1, . . . , kr−1 and the plaintext block P1 ∥ P2

Ensure: The ciphertext block C1 ∥ C2

1: u = P1;
2: v = P2;
3: for i = 0 to r − 1 do
4: (C1, C2)← Eki(u, v);
5: u← C1;
6: v ← C2;
7: endfor

Decryption: The decryption algorithm takes as inputs k0, k1, . . . , kr−1 and the cipher­

text block C1 ∥ C2 and generates the plaintext block P1 ∥ P2.
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Algorithm 10 Decryption of SPECKm,n

Require: The subkeys k0, k1, . . . , kr−1 and the ciphertext block C1 ∥ C2

Ensure: The plaintext block P1 ∥ P2

1: u = C1;
2: v = C2;
3: for i = r − 1 to 0 do
4: (P1, P2)← Dki(u, v);
5: u← P1;
6: v ← P2;
7: endfor

4.3 Motivational Observation

≫ 7

(16)

x
y

z

k21

C1

≪ 2

C2

Figure 4.2: Final round of encryption of SPECK32,64

The final round of encryption of SPECK32,64 is shown in Figure 4.2. Let x and y, which

are distributed uniformly at random, be the inputs to the modular addition in the final

round of SPECK32,64, z be the sum of x and y modulo 216, ci+1 be the carry generated

at the (i + 1)th bit position of the addition modulo operation, where 0 ≤ i ≤ 15 (for

instance, outgoing carry at the LSB position is denoted by c1), cout be the carry flag at
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the end of the encryption andC1 ∥ C2 be the ciphertext block generated. We assume that

cout equals c16. The allowed values of the Boolean variables x(i), y(i), ci, z(i) and ci+1

are tabulated in Table 4.3. The truth table clearly shows that ci and z(i) ⊕ 1 are biased

towards ci+1.

Based on this observation, we compute the bias of z(i) ⊕ 1 towards cout for any

i ∈ {15, 14, . . . , 0}. It is reasonable to assume that x(i), y(i) and ci are independent, and

all the possible outcomes given in Table 4.3 are mutually exclusive. Let Pr(x(i) = 0) =

Pr(y(i) = 0) = 1
2
and Pr(ci = 0) = ρi. From Table 4.3, we deduce the following:

Pr(ci ⊕ ci+1 = 0) = 3 · ρi
4
+ 3 · 1− ρi

4
=

3

4
, (4.1)

Pr(z(i) ⊕ ci+1 = 1) = 3 · ρi
4
+ 3 · 1− ρi

4
=

3

4
. (4.2)

Let Pr(ci+1 ⊕ cout = 0) = qi+1. From (4.1) and (4.2), we get:

Pr(ci ⊕ cout = 0) = Pr(ci ⊕ ci+1 = 0) · Pr(ci+1 ⊕ cout = 0)

+ Pr(ci ⊕ ci+1 = 1) · Pr(ci+1 ⊕ cout = 1)

=
3

4
qi+1 +

1

4
(1− qi+1)

=
2qi+1 + 1

4
, (4.3)

Pr(z(i) ⊕ cout = 1) = Pr(z(i) ⊕ ci+1 = 1) · Pr(ci+1 ⊕ cout = 0)

+ Pr(z(i) ⊕ ci+1 = 0) · Pr(ci+1 ⊕ cout = 1)

=
3

4
qi+1 +

1

4
(1− qi+1)

=
2qi+1 + 1

4
. (4.4)
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Since c16 = cout, we get:

Pr(z(15) ⊕ cout = 1) =
3

4
, (4.5)

Pr(c15 ⊕ cout = 0) =
3

4
. (4.6)

Equations (4.3), (4.4) and (4.6) gives:

Pr(z(14) ⊕ cout = 1) =
5

8
, (4.7)

Pr(c14 ⊕ cout = 0) =
5

8
. (4.8)

Similarly, probabilities that z(i)⊕cout = 1 for the remaining values of i can be computed

by recursively applying (4.3) and (4.4), and are tabulated in Table 4.4.

Table 4.3: Truth table showing the allowed values of the Boolean variables x(i), y(i), ci,
z(i) and ci+1

x(i) y(i) ci z(i) ci+1

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

4.4 Key Recovery

In this Section, we will see how an attacker, who has access to the encryption device of

SPECK32,64, exploits the bias present in the distribution of z(i) ⊕ cout to recoverK with
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Table 4.4: Probabilities that z(i) ⊕ cout = 1, for 15 ≥ i ≥ 0, in SPECK32,64

i Pr(z(i) ⊕ cout = 1)

15 0.5 + 2−2

14 0.5 + 2−3

13 0.5 + 2−4

12 0.5 + 2−5

11 0.5 + 2−6

10 0.5 + 2−7

9 0.5 + 2−8

8 0.5 + 2−9

7 0.5 + 2−10

6 0.5 + 2−11

5 0.5 + 2−12

4 0.5 + 2−13

3 0.5 + 2−14

2 0.5 + 2−15

1 0.5 + 2−16

0 0.5 + 2−17

a complexity lesser than that of exhaustive search. At the end of each encryption, the

attacker observes the ciphertext as well as the carry flag. Then she makes a guess k̂21(i)

for k21(i), where 15 ≥ i ≥ 0. Based on the guess, she computes ẑ(i) := C1(i) ⊕ k̂21(i)

and in turn bi := ẑ(i)⊕ cout. Since z(i)⊕ cout is biased towards 1, her guess will be right

only when bi is also biased towards 1.

Let N denote the number of bi’s available to the attacker (collected from different

cipher texts), βi denote the distribution of Bi :=
∑

N bi, pi = Pr(bi = 1), β′
i denote

the distribution of Bi if bi’s were biased towards 0 and p′i = 1 − pi. For any given

i, if the bi’s are independent and identically distributed random variables (i.i.d.) then

Bi has a binomial distribution. The means (µi, µ
′
i) and standard deviations (σi, σ

′
i) of

the distributions βi, β
′
i are given by: µi = Npi, µ′

i = Np′i, σi =
√

Npi(1− pi) and

σ′
i =

√
Np′i(1− p′i). IfN is large, one can approximate each binomial distribution with

the normal distribution having the same mean and standard deviation.

Given this, if |µi−µ′
i| > ti(σi+σ′

i) =⇒ N > 0.25ti
2/(pi−0.5)2, the attacker can

determine whether bi is biased towards 1 or 0 with success probability ωi, where ωi is
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the value given by the cumulative distribution function at µi+tiσi.3 If ti is 3.28, the bias

can be determined with 99.99% success rate (since the cumulative distribution function

gives the value 0.9999 at µi + 3.62σi) and 0.01% false positive rate.4 The number of

samples required to determine if bi is biased to 1 or 0, for any i such that 15 ≥ i ≥ 0, with

an upper bound 232 (since the block size is 32) are listed in Table 4.5. The attacker will

be able to recover the 13 most significant bits of k21 with more than 99.99% success rate

by observing 229.7 encryptions. The values of pi − 0.5, ti and the success probabilities

ωi, for any i such that 15 ≥ i ≥ 0, when N = 230 are listed in Table 4.6.

If k21, k20, k19 and k18 are known, the key schedule of SPECK32,64 can be reversed

using Algorithm 11. Therefore, the unrecovered bits of k21 along with k20, k19 and k18

can be obtained through brute force with a complexity of 251 time which in turn leads to

the recovery of K.

Table 4.5: Data requirements for SPECK32,64 (corresponding to 0.9999 success proba­
bility) to determine if bi is biased to 1 or 0, for 15 ≥ i ≥ 0

i log2(#samples)

15 5.7
14 7.7
13 9.7
12 11.7
11 13.7
10 15.7
9 17.7
8 19.7
7 21.7
6 23.7
5 25.7
4 27.7
3 29.7
2 31.7
1 32
0 32

3The cumulative distribution function ϕ(x) of the standard normal distribution is given by ϕ(x) =
1√
2π

∫ x

−∞ e−t2/2dt.
4Since ϕ(∞) = 1, 100% success rate will be theoretically possible only at∞.
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Table 4.6: Values of pi − 0.5, ti and the success probabilities ωi corresponding to N =
230, for 15 ≥ i ≥ 0

i pi − 0.5 ti ωi

15 2−2 16384 ∼ 1
14 2−3 8192 ∼ 1
13 2−4 4096 ∼ 1
12 2−5 2048 ∼ 1
11 2−6 1024 ∼ 1
10 2−7 512 ∼ 1
9 2−8 256 ∼ 1
8 2−9 128 ∼ 1
7 2−10 64 ∼ 1
6 2−11 32 ∼ 1
5 2−12 16 ∼ 1
4 2−13 8 ∼ 1
3 2−14 4 0.9999
2 2−15 2 0.9772
1 2−16 1 0.8413
0 2−17 0.5 0.6915

Algorithm 11 Key recovery of SPECKm,n

Require: The subkeys kj, kj+1, . . . , kj+ 2n
m

−1 where 0 ≤ j ≤ r − 2n
m

Ensure: K

1: w = 2n
m
;

2: for i = w − 2 to 0 do
3: lj+i+w−1 ← kj+i+1 ⊕ (kj+i ≪ 2);
4: endfor
5: for i = j + w − 2 to 0 do
6: (li, ki)← Di(li+w−1, ki+1);
7: endfor
8: K ← lw−2 ∥ lw−3 ∥ . . . ∥ l0 ∥ k0;

4.4.1 Experimental Verification

In order to verify our analysis, the attack on SPECK32,64 was simulated. We encrypted

223 plaintext blocks generated uniformly at random using an arbitrary key and observed
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Algorithm 12 Subkey recovery of SPECK32,64

Require: The ciphertext word C1 and the output carry cout generated from 223 encryp­
tions
Ensure: The subkey k21

1: for i = 15 to 0 do
2: Zi = 0;
3: k21(i) ← 0;

4: endfor
5: n = 223;
6: do until n ciphertexts are generated
7: for i = 15 to 0 do
8: bi = C1(i) ⊕ k21(i) ⊕ cout;
9: Bi = Bi + bi;
10: endfor
11: enddo
12: for i = 15 to 0 do
13: ϵi = 2i−17; a

14: ti = 2ϵi
√
n;

15: σi =
√

n(0.25− ϵ2i );
16: αi = n(0.5 + ϵi)− tiσi + 1; b

17: if Bi < αi

18: k21(i) ← 1;

19: endif
20: endfor

aϵi = |pi − 0.5|
bαi is the critical value such that the confidence intervals of the distributions βi and β′

i do not overlap.
At αi − 1, they overlap.

the output carry (cout) generated at the end of each encryption.5 Using Algorithm 12,

we set k21(i) as 0, where 15 ≥ i ≥ 0, if Bi was lying within the confidence interval

of βi, or 1 otherwise.6 This process was repeated 2 × 104 times. The success rates at

which we were able to recover each bit of the subkey are tabulated in Table 4.7. The C
5The 64 least significant bits of ξκ(C) form an arbitrary key (for e.g., 0x23f7290ff115eda1) where

ξκ is AES encryption function with a random key κ and C is some constant.
6The critical value used to distinguish between βi and β′

i has to ensure that the confidence intervals
of the distributions do not overlap.
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program which can be used to recover the 10 most significant bits of the final subkey of

SPECK32,64 is given in Figure 4.3.

Table 4.7: Success rates of our experiments on SPECK32,64 to recover k21(i) with 223

samples, for 15 ≥ i ≥ 0

i Success rate (%)
15 100
14 100
13 100
12 100
11 100
10 100
9 100
8 100
7 100
6 99.84
5 92.28
4 75.91
3 62.98
2 57.17
1 54.09
0 49.72

4.4.2 Reducing the Time Complexity of the Attack

The time complexity of our attack can be reduced by utilising the information about the

bias in the distribution of z(i)⊕ cout while performing exhaustive search of the unrecov­

ered bits of k21. For instance, if 230 bi’s are available to the attacker then the 13 most

significant bits of k21 can be recovered with 99.99% success rate where as the recov­

ery of k21(2), k21(1) and k21(0) will only have 97.72%, 84.13% and 69.15% success rates,

respectively (see Table 4.6). In other words, at least one of the three least significant

bits of k21 can be recovered with a success rate of 99.89% or at least two of them can

be recovered with 94.26% success rate (see (4.9) and (4.10)). If we assume that one

of the three least significant bits of k21 computed using Algorithm 12 is correct, only

7 out of the 8 possible choices of the three bits need to be checked while doing brute
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Figure 4.3: Program to recover the 10 most significant bits of the final subkey of
SPECK32,64

force. Similarly, exhaustive search can be limited to 4 out of the 8 possible choices, if it

is assumed that any two out of the three least significant bits have been correctly com­

puted. Therefore, the time complexity of the full key recovery attack can be reduced to a

factor of 7
8
with 99.89% success rate or to a factor of 1

2
with 94.26% success rate. In or­

der to prevent collision attacks [204], designers recommend that “the number of blocks

encrypted using a single key for an n­bit block cipher should be kept well under 2n
2 ”

[205]. Taking this into consideration, it is assumed that 214 bi’s are only available to the

attacker which, in turn, will increase the time complexity of our attack.7 The remaining

versions of SPECK can also be attacked similarly and the complexities of our attacks on

SPECKm,n for the success rates 99.99%, 99.89% and 94.26% are listed in Table 4.8.
7SPECKm,n is assumed to encrypt at the most 2m

2 −2 blocks using a single key so that the collision
probability will be below 2−5.
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Table 4.8: Complexities of the full key recovery attacks on SPECKm,n corresponding to
the success rates (SR) of 99.99%, 99.89% and 94.26%

SR = 99.99% SR = 99.89% SR = 94.26%
Cipher Data Time Data Time Data Time

SPECK32,64 214 259 214 258.81 214 258

SPECK48,72 222 263 222 262.81 222 262

SPECK48,96 222 287 222 286.81 222 286

SPECK64,96 230 283 230 282.81 230 282

SPECK64,128 230 2115 230 2114.81 230 2114

SPECK96,96 246 275 246 274.81 246 274

SPECK96,144 246 2123 246 2122.81 246 2122

SPECK128,128 262 299 262 298.81 262 298

SPECK128,192 262 2163 262 2162.81 262 2162

SPECK128,256 262 2227 262 2226.81 262 2226

ωa = 1− ((1− ω2)(1− ω1)(1− ω0)) = 0.9989 , (4.9)

ωb = 1− ((1− ω2)(1− ω1)(1− ω0))− (ω2(1− ω1)(1− ω0))

−((1− ω2)ω1(1− ω0))− ((1− ω2)(1− ω1)ω0) = 0.9426 , (4.10)

where ω2, ω1 and ω0 are the success probabilities to recover k21(2), k21(1) and k21(0),

respectively, and ωa and ωb are the success probabilities to recover at least one of them

and at least two of them, respectively.

4.5 Attack on Key Schedule

In this Section, we will see how the carry generated at the end of the key expansion

phase can be exploited to reduce the complexity of our attack on SPECK32,64. Since the

round functions used in key schedule and encryption algorithms are the same, weakness

similar to the one mentioned in Sect. 4.3 will be present in the key expansion phase too.

The final round of the key expansion phase of SPECK32,64 is shown in Figure 4.4. Let x
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and y, which are distributed uniformly at random, be the inputs to the modular addition

in the final round of the key schedule, z be the sum of x and y modulo 216, ci+1 be the

carry generated at the (i + 1)th bit position of the addition modulo operation, where

0 ≤ i ≤ 15 (for example, outgoing carry at the LSB position is denoted by c1), and

dout be the carry flag at the end of the key schedule. The allowed values of the Boolean

variables x(i), y(i), ci, z(i) and ci+1 are same as those tabulated in Table 4.3 and from it,

we find that Pr(y(i) = ci+1) =
3
4
. We assume that dout equals c16 and therefore we get,

Pr(y(15) = dout) = 3
4
. In other words, if the attacker is able to observe the carry flag

at the end of key expansion phase, the most significant bit of y = k20 can be recovered

immediately with a success rate of 75%. Combining this information with the attack

of Sect. 4.4.2, we deduce that from the set of bits including k20(15) and the three least

significant unknown bits of k21, any one can be recovered with a success rate of 99.97%,

any two bits can be recovered with 98.48%success rate or any three bits can be recovered

with 84.91% success rate. Similar attacks can be built on the remaining versions of

SPECK too. The complexities of the key recovery attacks on SPECKm,n corresponding

to the success rates of 99.97%, 98.48% and 84.91% are listed in Table 4.9.8

l20

≫ 7

x
y

z
(16)

20

l23

k20

≪ 2

k21

Figure 4.4: Final round of the key expansion phase of SPECK32,64

8Data requirements are same as those listed in Table 4.8.
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Table 4.9: Complexities of the full key recovery attacks on SPECKm,n corresponding
to the success rates (SR) of 99.97%, 98.48% and 84.91%, under the assumption that the
carry flag at the end of the key expansion phase is known

SR = 99.97% SR = 98.48% SR = 84.91%
Cipher Data Time Data Time Data Time

SPECK32,64 214 258.9 214 258.46 214 257.32

SPECK48,72 222 262.9 222 262.46 222 261.32

SPECK48,96 222 286.9 222 286.46 222 285.32

SPECK64,96 230 282.9 230 282.46 230 281.32

SPECK64,128 230 2114.9 230 2114.46 230 2113.32

SPECK96,96 246 274.9 246 274.46 246 273.32

SPECK96,144 246 2122.9 246 2122.46 246 2121.32

SPECK128,128 262 298.9 262 298.46 262 297.32

SPECK128,192 262 2162.9 262 2162.46 262 2161.32

SPECK128,256 262 2226.9 262 2226.46 262 2225.32

4.6 Discussion

Vulnerable implementations. The attacks presented in this Chapter are based on one

of the following adversarial assumptions:

• AA1: The outgoing carries at the MSB position of modular additions in the final

round of encryption phase and key expansion phase agree with the carry flags at

the end of the respective phases, and the attacker can detect them.

• AA2: The attacker can detect the bit­flips in the carry flag after the modular ad­

dition of the final round of encryption phase.

In [206], Beaulieu et al. presented a one­bit­per­clock implementation of SPECK

on ASIC in which the modular addition is implemented using a full adder circuit with

a carry flag. From this reference implementation, it is inferred that the carry flag is not

altered after the modular addition making it vulnerable to our attack as per AA1.

Based on the reference pseudocode provided in [207], SPECK can have two types

of software implementations which we call Implementation A and Implementation B.

The pseudocodes of the final rounds of the two software implementations of SPECK are

given in Table 4.10. The left circular shift operation that follows the modular addition in
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Implementation A alters the carry flag making it invulnerable going by AA1. A possible

way to keep the carry flag unaffected after the targeted modular addition is to skip the

processor instructions related to the left circular shift operation of the final round by

introducing timing or voltage glitches as presented in [208, 209]. Since the skipped

instructions do not affect C1, our attack still works.

Table 4.10: Pseudocodes of the final rounds of the two software implementations of
SPECK, where r is the number of rounds and (x, y) are the inputs to the final round

Implementation A Implementation B
1: x← (x ≫ α) 1: x← (x ≫ α)

2: x← x+ y 2: tmp← (y ≪ β)

3: x← x⊕ kr−1 3: x← x+ y

4: y ← (y ≪ β) 4: x← x⊕ kr−1

5: y ← y ⊕ x 5: y ← tmp⊕ x

6: (C1, C2)← (x, y) 6: (C1, C2)← (x, y)

To validate it, we compiled the reference implementation of SPECK for 8­bit AVR

microcontrollers [210], which is a secure implementation as per AA1, available at

the University of Luxembourg Fair Evaluation of Lightweight Cryptographic Systems

(FELICS) project [211] after manually removing the processor instructions related to

the left circular shift operation of the final round. The execution of the generated hex

file in Atmega128 microcontroller was simulated using the AVR simulator simavr and

we could confirm that the outgoing carry at the MSB position of modular addition in the

final round agrees with the carry flag at the end of encryption as shown in Figure 4.5.

Since both the implementations provided in Table 4.10 generate the same output, ma­

licious updating of the microcontroller firmware to include the vulnerable code might

remain undetected leading to another possible way to attack an otherwise secure imple­

mentation.

The attacker who observes the ciphertext blockC1 ∥ C2 can compute the input to the

left circular shift operation as (C1 ⊕ C2) ≫ β. If the input is known, she can compute

the carry flag at the end of left circular shift. If AA2 is valid, the attacker detects the
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Figure 4.5: Simulation of the SPECK implementation for AVR microcontrollers avail­
able in the FELICS project [211] to confirm that the outgoing carry at the MSB position
of modular addition in the final round agrees with the carry flag at the end of encryption,
if the left circular shift operation of the final round is skipped

bit­flips in the carry flag during the left circular shift operation and rightly guesses the

outgoing carry of the modular addition. This makes the reference implementation [210]

vulnerable, which was secure according to AA1. Nevertheless, going by AA2, the key

expansion phase of SPECK cannot be attacked as lr+1 is unknown (see Figure 4.4).

Since SPECKm,n is intended to be implemented on 8­, 16­ and 32­bit microcon­

trollers [212], the operation ⊞(m
2
) will be performed using 8­, 16­ and 32­bit additions,

respectively. To perform the operation ⊞(m
2
) on an ℓ­bit microcontroller, m

2ℓ
ℓ­bit addi­

tions, starting from the ℓ least significant bits to the ℓmost significant bits, are required.

The final addition will not set the carry flag unless m
2
is a multiple of ℓ. Therefore, the

assumptions used in this Chapter will be valid only when SPECKm,n is implemented on

an ℓ­bit microcontroller where m
2
is a multiple of ℓ. The SPECK implementations which
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are vulnerable to our attacks are listed in Table 4.11. The possibility of implementing

SPECKm,n in 64­bit platforms also has been discussed by the designers [212]; in such

cases, if 64­bit accumulators are used, ciphers with a block size of 128 bits alone are vul­

nerable. If the flash memory is large enough to store the round keys, SPECKm,n can be

implemented without the key expansion phase as suggested by the designers in [210]. In

such implementations, our attack on the key schedule as given in Sect. 4.5 will not work.

Table 4.11: Vulnerability of SPECKm,n when implemented on ℓ­bit microcontroller,
where ℓ = 8, 16 or 32

Cipher ℓ = 8 ℓ = 16 ℓ = 32

SPECK32,64 Yes Yes No
SPECK48,72 Yes No No
SPECK48,96 Yes No No
SPECK64,96 Yes Yes Yes
SPECK64,128 Yes Yes Yes
SPECK96,96 Yes Yes No
SPECK96,144 Yes Yes No
SPECK128,128 Yes Yes Yes
SPECK128,192 Yes Yes Yes
SPECK128,256 Yes Yes Yes

Detecting the carry flag. The success of our attack solely depends on the chances of

the adversary to read the carry flag at the end of a key expansion or encryption phase,

if we are going by AA1. A complete treatment of the side­channel techniques used to

obtain the carry flag is beyond the scope of this work. Nevertheless, we would like to

highlight the following methods. An adversary who has the necessary privileges to exe­

cute any code of his choice in the encryption device will be able to detect the carry flag

by executing the add with carry (ADC) instruction [213] soon after the key expansion or

encryption phase. Return­oriented programming is a possible technique that can be used

to execute a chosen instruction in the encryption device [214, 215, 216]. The only chal­

lenge will be to execute the code in the same core where the encryption program runs,
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if it is a multicore processing device, and before the carry flag is potentially affected by

any other operation.

Another possible method is to exploit the electromagnetic side­channel of the en­

cryption device to detect the carry flag. In [217], Heyszl et al. presented a technique

to distinguish the activities of registers by precisely measuring the electromagnetic field

of small regions on integrated circuits using high resolution inductive probes. Also, it

is practically feasible to distinguish between 0→ 1 and 1→ 0 bit transitions in certain

implementations using electromagnetic analysis [218, 219]. Therefore, the attacker can

analyse the electromagnetic field of the flag register to detect if the carry flag got set or

reset during modular addition.

In [220], Fouque et al. demonstrated an attack on an implementation of HMAC­

SHA­1 for a NIOS processor, where the electromagnetic side­channel was used to

measure the number of bits flipped in a register. The same technique when applied

on the flag register enables the attacker to detect the bit­flips in the carry flag, which

validates AA2. Yet another method is to inject a fault during the computation of the

carry, as explained by Fouque et al. [132] to get the carry information.

Improving the attack. Our work is originally motivated by the following re­

mark due to Kelsey et al. [129]: “There may be cases when we can learn the state of

the overflow or carry flag during encryption; if so, this can form a useful side­channel.

[I]t demonstrates a useful feature of side­channel cryptanalysis: the side­channel can

give information about the operations performed instead of the values used. This can

work even when the information about the operation yields only minimal information

about the values themselves.” It is possible that the attacker has access to other flags

too. Overflow and parity flags, in some cases, help reduce the time complexities of our

attacks by a factor of four.9

9In an ℓ­bit accumulator, a carry in the (ℓ − 1)th bit sets overflow flag. Carry flag is set when there
is an outgoing carry at the MSB position whereas overflow flag is set when there is an incoming carry at
the MSB position. Parity flag indicates if the number of ones in the binary representation of the result of
the last operation is odd or even.
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C ′
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C ′
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C ′
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≪ 2
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Figure 4.6: Last two rounds of encryption of SPECK32,64

Another way to improve our attacks is to involve the penultimate round(s). For

instance, let us assume that an unprotected implementation of SPECK32,64 uses an 8­bit

accumulator and the attacker can investigate the four additions from last two rounds.

The two penultimate rounds of SPECK32,64 are shown in Figure 4.6. Let x and y be

the inputs to the modular addition in the final round and z be its output. As explained

in Sect. 4.4, by observing 214 encryptions and the corresponding carries generated from

F0(x) + F0(y) and F1(x) + F1(y), five most significant bits of F0(k21) and F1(k21) can

be recovered with 99.99% success rate.

Using z = C1 ⊕ k21, five most significant bits of F0(z) and F1(z) can be computed

and y is given by (C1 ⊕ C2) ≫ 2. Let xu,5, yu,5 and zu,5 be the five most significant

bits of F1(x), F1(y) and F1(z), respectively. If x̂u,5 denotes (cout ∥ zu,5) − yu,5 then

xu,5 equals x̂u,5 + cin, where cout and cin are the carries generated at the 8th and 3rd bit

positions of xu + yu, respectively. The four most significant bits of x̂u,5 and xu,5 will

be equal when the least significant bit of x̂u,5 is 0. Since this occurs with probability

0.5, under the assumption that x̂u,5 is distributed uniformly at random, in 213 out of the

214 encryptions observed, we can compute the four most significant bits of xu,5 with

99.99% success rate. Since C ′
1 = x ≪ 7 , where C ′

1 ∥ C ′
2 is the output of the 21st
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round of SPECK32,64, we get the four bits of F0(C
′
1) corresponding to the known bits of

xu,5. If V represents the known bits and U represents the unknown bits, F0(C
′
1) can be

represented as UV V V V UUU in 213 encryptions. In each of these encryptions, if the

carry flag after the first addition of the 21st round is known then the three bits of F0(k20)

corresponding to the three most significant known bits of F0(C
′
1) can be recovered with

99.99% success rate.10

Similar analysis can be used to recover 3 bits of F1(k20). Thus 16 bits of the 64­bit

key can be recovered with 99.99% success rate by observing 214 encryptions. When the

overflow flag information is also exploited, 20 bits of the key can be recovered with the

same success rate and complexity.

Countermeasure. A simple method to preclude our attack is to mask the carries gen­

erated at the end of the key expansion and encryption phases by introducing low­cost

arithmetic operations after step 8 and step 7 of Algorithms 8 and 9, respectively, which

permanently set or clear the carry flag. However, the approach fails if the attack model

assumes that the attacker can determine the carry flag at any stage of execution of the

code or skip the arithmetic operation introduced to mask the outgoing carry of the mod­

ular addition.

4.7 Conclusions

In this Chapter, we have shown side­channel attacks on the SPECK family of block

ciphers which is an ISO/IEC standard for RFID devices. Our attacks are applicable on

the full ciphers. Although there are a few fault attacks which work on the full SPECK,

our attacks are comparatively more feasible due to the weaker assumptions we make.

The data requirements for our attacks are well below the respective birthday bounds.

Depending on the key size and block size, the complexities of our attacks, to nearly
10By observing 213 encryptions, at the most four bits ofF0(k20) can be recovered with 99.99% success

rate, given that the four most significant bits of F0(C
′
1) are known.
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ensure success, vary from 259 time and 214 data to 2227 time and 262 data. Since the

vulnerability of the cipher to our attack depends on the way it is implemented, the details

of the vulnerable implementations have also been provided. We have also proposed a

countermeasure to preclude our attacks.



Chapter 5

Fault­Assisted Side­Channel Analysis

of HMAC­Streebog

5.1 Introduction

HMAC­Streebog. Streebog is a family of hash functions developed by the Center for

Information Protection and Special Communications of the Federal Security Service of

the Russian Federation with the participation of the open joint­stock company Informa­

tion Technologies and Communication Systems (InfoTeCS JSC) [150]. It is defined in

the Russian cryptographic standard GOST R 34.11–2012 [150]. Streebog is comprised

of two hash functions, Streebog­256 and Streebog­512, which generate 256­bit and 512­

bit message digests, respectively.

HMAC is an algorithm to calculate a message authentication code (MAC), based

on a hash function [221]. In its first phase, an inner hash is derived from the message

and the inner key. Later, it generates the outer hash from the inner hash and the outer

key, and outputs it as the MAC. The specifications of the HMAC algorithms based on

Streebog has been defined in RFC 7836 [144]. Corresponding to Streebog­256 and

Streebog­512, two HMAC algorithms exist which we call HMAC­Streebog­256 and

HMAC­Streebog­512, respectively. The recommended key sizes of HMAC­Streebog­

107
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256 and HMAC­Streebog­512 are at least 256 bits and 512 bits, respectively, and not

more than 512 bits [221].

Considering its significance, Streebog was well studied over a period of time

[222, 223, 224, 225, 226, 227, 131]. Except for the side­channel attack by Sekar [131]

and the differential fault attack by AlTawy et al. [227], attacks on Streebog are on its

reduced­round variants. In [228], Dinur et al. presented the first key recovery attack

on HMAC­Streebog­512 with a complexity of 2410. Later, AlTawy et al. presented

differential fault attacks [227] on HMAC­Streebog­512 and HMAC­Streebog­256

which can recover the key by injecting single­bit faults into the last two intermediate

states of all the compression functions of the outer hash function. The authors claimed

that the average number of faults required to recover the input of each compression

function of Streebog vary between 338 and 1640.

Contributions of this work. Side­channel attacks on HMAC­Streebog are pre­

sented in this Chapter. Carry flag is a bit of the status register, present in nearly every

modern microprocessor, that indicate carry overflow in unsigned integer arithmetic. In

[131], Sekar conjectured that the carry flag based side­channel attack could speed up

the key recovery of HMAC­Streebog­256 and HMAC­Streebog­512 by a factor of 2,

in certain cases. Our investigation of this conjecture resulted in passive side­channel

attacks on HMAC­Streebog­256 and HMAC­Streebog­512 which can recover one

bit of the respective key with a success rate of 75%. The attacks work under the

assumption that the inner hash of the HMAC and the carry flag at the end of MAC

generation are known to the attacker. We find that the attacks can be further improved

by injecting faults into the output of the inner hash function and propose active attacks

on HMAC­Streebog­256 and HMAC­Streebog­512 which can recover the keys with

212.98 and 214.97 average number of fault injections, respectively, for 95% success rate.

We assume that the attacker is able to flip at the most 181 and 361 chosen bits at a time,

respectively, for HMAC­Streebog­256 and HMAC­Streebog­512.
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To the best of our knowledge, our passive attack is the best non­fault attack on

HMAC­Streebog­256. Compared to the attack in [227], our attacks have a longer

temporal window for fault injection and cannot be mitigated using output redundancy

countermeasures as we rely on the carry flag side­channel.1,2 Also, it is reasonable

to assume that the inner hash being an intermediate output is more accessible than

the internal state of Streebog. If the intermediate carries generated by the ripple

carry adder implementation of the targeted addition are known, complexities of our

passive attacks and fault requirements of our active attacks reduce as each adder can be

attacked separately. When implemented in systems which are vulnerable to attacks like

Rowhammer [230], Meltdown [125], Spectre [126], SplitSpectre [127], RAMBleed

[128] and Cold Boot [231], HMAC­Streebog will be highly vulnerable to our attacks.

Organisation of the Chapter. The remaining Chapter is organised as follows.

Section 5.2 describes Streebog and HMAC­Streebog. We present our motivational ob­

servations in Sect. 5.3. Our attacks on HMAC­Streebog­512 and HMAC­Streebog­256

are presented in Sect. 5.4. The validity of our assumptions is discussed in Sect. 5.5 and

we conclude in Sect. 5.6.

5.2 Specification of HMAC­Streebog

5.2.1 Description of Streebog

Streebog accepts any messageM of length less than 2512 bits and returns a 256­ or 512­

bit digest. If the message length |M | is not a multiple of 512, M is prefixed with a bit

string pad := {0}511−(|M | mod 512) ∥ 1. The padded message is then partitioned into k+1

512­bit blocks Mk, Mk−1, . . . , M0 such that pad ∥ M = Mk ∥ Mk−1 ∥ . . . ∥ M0.
1The data to be altered is available for more than 2t time, where t is the time taken by the compression

function of Streebog, as the targeted modular addition is executed after two compression operations.
2In output redundancy countermeasures, data is processed via redundant channels and the output will

not be generated unless all of them agree to it. Still, the carry flag side­channel remains unaffected.
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Algorithm 13 The Streebog algorithm
Require: The messageM , |M | < 2512

Ensure: A 256­bit or a 512­bit digest

1: M → pad ∥M →Mk ∥Mk−1 ∥ . . . ∥M0;
2: π0 = IV ; n0 = 0; S = 0;
3: for i = 0 to (k − 1) do
4: πi+1 = G(πi,Mi, ni);
5: ni+1 = ni + 512 mod 2512;
6: S = S +Mi mod 2512;
7: endfor
8: πk+1 = G(πk,Mk, nk);
9: nk+1 = nk + 512−|pad| mod 2512;
10: S = S +Mk mod 2512;
11: πk+2 = G(πk+1, nk+1, 0);
12: H = G(πk+2, S, 0);
13: Output H if Streebog­512, else output H ≫ 256;

The compression function G has 13 iterations out of which 12 involve a substitution­

permutation layer which consists of the following components: a substitution function

Γ, a permutation function F , a linear transformation L and a function X [·]. The sub­

stitution function substitutes each byte of its 512­bit input by a byte from a permuted

set of {0, 1, . . . , 255} and the permutation function shuffles the position of each byte

in its 512­bit input. The linear transformation of a 512­bit inputW is performed as fol­

lows: L(W ) = l(Ψ7(W )) ∥ l(Ψ6(W )) ∥ . . . ∥ l(Ψ0(W )), where l outputs the right

multiplication of its input with a constant matrix A over GF (2) (see (5.1)). If a and b

are 512­bit strings, X [a](b) = a ⊕ b. The compression function G that processes the

message block Mi takes as additional inputs the 512­bit chaining value πi and a length

counter ni, and outputs πi+1 (see (5.3)). The initial value π0 is a 512­bit IV which is

different for Streebog­256 and Streebog­512. Algorithm 13 describes the working of

Streebog.



FAULT­ASSISTED SIDE­CHANNEL ANALYSIS OF HMAC­STREEBOG 111

l(ζ) =
63⊕
i=0

ζ(63−i) ⊙ A[i] , (5.1)

where

ζ(63−i) ⊙ A[i] =


{0}64, if ζ(63−i) = 0 ;

A[i], if ζ(63−i) = 1 .

(5.2)

πi+1 := G(πi,Mi, ni) = E(L(F(Γ(πi ⊕ ni))),Mi)⊕ πi ⊕Mi , (5.3)

where

E(L(F(Γ(πi⊕ni))),Mi) = X [ν13]LFΓX [ν12]LFΓX [ν11] . . .LFΓX [ν1](Mi) , (5.4)

and ν1, ν2, . . . , ν13 are derived as,

ν0 = LFΓ(πi ⊕ ni) , (5.5)

νj+1 = LFΓ(νj ⊕ Cj) , for j = 0, 1, . . . , 12, and constants Cj. (5.6)

5.2.2 Description of HMAC­Streebog

A HMAC algorithm employs a hash function h in conjunction with a secret key K and

generates a MAC value as follows:

HMAC(K,M) = h

(
(K0 ⊕ opad), h((K0 ⊕ ipad),M)

)
, (5.7)

where M is the message, opad and ipad are public constants, and K0 is the secret key

if |K| equals the block size of h, or a function of K otherwise. HMAC­Streebog will

use either Streebog­512 or Streebog­256 as the underlying hash function. According to

RFC 2104 [221], the recommended length of the secret key for a secure HMAC is equal

to the digest length of h, and it cannot be more than the block size of h. Therefore the
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key size of HMAC­Streebog has to be at least 256 or 512 bits depending on whether

Streebog­256 or Streebog­512 is used as the hash function. If K is shorter than the

block size, it is padded with {0}512−|K| to get K0. Algorithm 14 describes the working

of HMAC­Streebog, where h is Streebog­256 or Streebog­512.

Algorithm 14 The HMAC­Streebog algorithm
Require: The messageM and secret key K in big­endian format
Ensure: A 256­bit or a 512­bit digest

1: K0 = {0}512−|k| ∥ K;
2: ipad = {00110110}64;
3: opad = {01011100}64;
4: Hin = h(M ∥ (K0 ⊕ ipad));
5: Hout = h(Hin ∥ (K0 ⊕ opad));
6: Output Hout;

5.3 Motivational Observations

5.3.1 On Carry in Modular Addition

Table 5.1: Table showing the allowed values of the Boolean variables x(i−1), y(i−1),
c(i−1), c(i) and c′(i), and the probability of each event where pi = Pr(c(i) = 0), for i > 1

x(i−1) y(i−1) c(i−1) c(i) c′(i) Probability

0 0 0 0 0 1
4
pi−1

0 0 1 0 1 1
4
(1− pi−1)

0 1 0 0 1 1
4
pi−1

0 1 1 1 1 1
4
(1− pi−1)

1 0 0 0 0 1
4
pi−1

1 0 1 1 0 1
4
(1− pi−1)

1 1 0 1 0 1
4
pi−1

1 1 1 1 1 1
4
(1− pi−1)
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Let x and y, which are distributed uniformly at random, be the inputs to an n­bit

modular addition, c(i) be the carry generated at the ith bit position of the addition, where

1 ≤ i ≤ n (for instance, outgoing carry at the LSB position is denoted by c(1)), and cout

be the final carry which equals c(n). The carries generated at the ith bit position when

input x is replaced with x⊕ In,i−1 is denoted by c′(i). The allowed values of the Boolean

variables x(i−1), y(i−1), c(i−1), c(i) and c′(i), for i > 1 and the probability of each event

(each possibility is considered an event) are tabulated in Table 5.1.3 Let us consider

two cases.

Case 1: The ith bit of x and c(i) for any i ∈ {n, n− 1, . . . , 1} are known.

From Table 5.1, we can deduce the following.

If x(i−1) ⊕ c(i) = 1,

y(i−1) = c(i), n ≥ i ≥ 2 , (5.8)

c(i−1) = c(i), n ≥ i ≥ 2 . (5.9)

Else, assuming the events given in Table 5.1 are mutually exclusive,

Pr(y(i−1) = c(i)) =
2

3
, n ≥ i ≥ 2 . (5.10)

Since c(0) = 0,

y(0) = c(1) ⇐⇒ x(0) ⊕ c(1) = 1 , (5.11)

y(0) = 1 ⇐⇒ x(0) = c(1) = 1 . (5.12)
3We assume that x(i−1), y(i−1) and c(i−1) are independent, and Pr(x(i−1) = 0) = Pr(y(i−1) = 0) =

0.5.
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Case 2: The ith bit of x, c(i) and c′(i) for any i ∈ {n, n− 1, . . . , 1} are known.

As in Case 1, equations (5.8), (5.9), (5.11) and (5.12) hold, if the respective conditions

are satisfied. In addition to them, we get the following.

If x(i−1) ⊕ c(i) = 0 and c(i) = c′(i),

y(i−1) = c(i), n ≥ i ≥ 1 , (5.13)

c(i−1) = c(i), n ≥ i ≥ 2 . (5.14)

If x(i−1) ⊕ c(i) = 0 and c(i) ̸= c′(i),

y(i−1) = c(i−1) ⊕ 1, n ≥ i ≥ 2 , (5.15)

y(i−1) = 1, for i = 1 . (5.16)

5.3.2 On the Recovery of an Unknown Operand

Let fn
y (x) be a function which takes an n­bit secret input y, which is distributed

uniformly at random, and an n­bit known input x, which is generated by a random

oracle,4 and outputs z := (x + y) mod 2n. If the carry cout is known, based on the

observations given in Sect. 5.3.1, the secret input y can be recovered quicker than

exhaustive search. We describe two methods to recover y, one each for the Cases of

Sect. 5.3.1.

Passive analysis. Based on Case 1, a passive analysis can be performed to recover the

k most significant bits of y using (5.8)–(5.12), if cout and the k most significant bits of

x are known.
4A random oracle is a theoretical black box that responds to every unique query with a response

chosen uniformly at random from its output domain.
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Algorithm 15 Recovering the secret input y of fn
y (x) using active analysis

Require: Known input x, carry cout and carries generated when x is modified
Ensure: n­bit y

1: Y = {0}; C = {cout};
2: for i = n to 1 do
3: Y new = {}; Cnew = {};

cnt = 0;
4: for j = 0 to sizeof(Y )− 1 do
5: y ← Y [j]; c(i) ← C[j];
6: if x(i−1) ⊕ c(i) = 1

7: y(i−1) = c(i);
8: if i ̸= 1

9: c(i−1) = c(i);
10: endif
11: else if i = 1 & c(1) = 1

12: y(0) = 1;
13: else
14: x′ = x⊕ In,i−1;
15: if i ̸= n

16: x′
l = x′

(i−1) ∥ x′
(i−2) . . . ∥

x′
(0);

17: yu = y(n−1) ∥ y(n−2) . . . ∥
y(i);

18: y′u = yu ⊕ (2n−i − 1);
19: c′(i) = carry generated after

executing fn
y (y

′
u ∥ x′

l);a

20: else
21: c′(i) = carry generated after

executing fn
y (x

′);
22: endif

23: if c′(i) = c(i)

24: y(i−1) = c(i);
25: if i ̸= 1

26: c(i−1) = c(i);
27: endif
28: else
29: y(i−1) = 1;
30: if i ̸= 1

31: Y new[cnt] = y;
32: Y new[cnt](i−1) = 0;
33: Cnew[cnt] = 1;
34: c(i−1) = 0;
35: cnt = cnt+ 1;
36: endif
37: endif
38: endif
39: Y [j]← y; C[j]← c(i−1);
40: endfor
41: for j = 0 to cnt− 1 do
42: Y [j+sizeof(Y )] = Y new[j];
43: C[j+sizeof(Y )] = Cnew[j];
44: endfor
45: endfor
46: Choose y from Y using exhaus­

tive search
47: Output y

aSince y′u + yu = {1}n−i, carry generated at the ith bit position of (y′u ∥ x′
l) + y will be equal to that

at the MSB.

Active analysis. From Case 2, Algorithm 15 has been derived and it additionally re­
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quires the carries generatedwhen a set of chosen x’s are given as inputs to fn
y (x). Chosen

x’s are used in steps 19 and 21.5

5.3.3 Passive Analysis vs Active Analysis

According to Case 1 of Sect. 5.3.1, x(i−1)⊕ c(i) and x(i−2)⊕ c(i−1) equal 1, if and only if

x(i−1) and x(i−2) are equal, for i > 1. Hence, to recover the k most significant bits of y,

where k ̸= n, with 100% success rate, either cout must be 1 and the corresponding bits of

x must be 0 or vice versa; probability of this event turns out to be 2−2k. Therefore, only

a few bits can be recovered with this method. Nevertheless, the most significant bit of

y can be recovered with 75% success rate using passive analysis as it can be recovered

with 2
3
probability when x(n−1) ⊕ cout equals 0.6
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Figure 5.1: Probability distributions of the size of Algorithm 15’s solution space for n =
4, 8, 12 and 16

Compared to passive analysis, active analysis can recover more number of bits with

a better success rate. At steps 29 and 31–34, (y(i−1), c(i−1)) takes the values (0, 1) and

(1, 0), following (5.15), due to which a set of possible solutions of y gets generated.

Instead of performing an exhaustive search over the entire space, our search is limited
5Since x and y are independent and distributed uniformly at random, y′u ∥ x′

l and x′, which constitute
the chosen x’s, are also uniformly distributed. The definitions of y′u, x′

l and x′ are given in Algorithm 15.
6Success probability := 1

4 · 1 +
3
4 ·

2
3 = 0.75.
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to this set of solutions. In order to analyse the size of this solution space, the algorithm

was tested with all possible values of x and y for n = 4, 8, 12 and 16. The results show

that for any n, at the most n, and on an average n
2
or n

2
+ 1, solutions will be generated.

The probability distributions of the size of solution space for n = 4, 8, 12 and 16 are

shown in Figure 5.1.
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Figure 5.2: Minimum number of simultaneous bit­flips (l) required to recover the kmost
significant bits for each of the success probabilities 0.6, 0.7, 0.8, 0.9 and 0.95

The other factors affecting the active analysis are the maximum number of modifi­

cations of x required and the maximum number of simultaneous bit­flips needed at any

instance of modification. Knowing x(i−1) and c(i), probabilities of passively recovering

y(i−1) with 100% success rate for i ̸= 1 and i = 1 are 0.25 and 0.5, respectively. Hence,

to recover k most significant bits of y, x has to be modified at the least 0.75k times.

When multiple solutions of y are generated, the number of modifications of x will be

more than 0.75k as it depends on the existing solutions of y (see step 19 of Algorithm 15).

The average number of modifications of x required to recover the ith bit of y was exper­

imentally computed to be equal to 3
4
+ 1

4

n−i∑
j=0

(1 − 2−j) where i ∈ {n, n− 1, . . . , 1}.

In order to understand the effect of the number of simultaneous bit­flips on the num­

ber of bits recovered, we performed another test using all possible inputs for n = 20.

The minimum number of simultaneous bit­flips l required to recover the k most sig­

nificant bits of y for each of the success probabilities 0.6, 0.7, 0.8, 0.9 and 0.95 where
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experimentally computed, and the results are plotted in Figure 5.2. The linear equations

0.6k−l+0.5 = 0, 0.626k−l+0.574 = 0, 0.636k−l+0.821 = 0, 0.677k−l+0.837 = 0

and 0.716k − l + 0.884 = 0, which were inferred using curve fitting techniques, define

the relationship between l and k for the success probabilities 0.6, 0.7, 0.8, 0.9 and 0.95,

respectively.

5.4 Key Recovery Attacks on HMAC­Streebog

We shall now discuss how an attacker, who has access to the authentication device of

HMAC­Streebog­512, can recover K with a complexity lesser than that of exhaustive

key search. We make the following assumptions:

1. The attacker knows the inner hash Hin mentioned in Algorithm 14.

2. The attacker is able to detect the carry flag at the end of message authentication

code generation.

3. The attacker is able to alter chosen bits of Hin on demand.

From step 5 of Algorithm 14 and step 10 of Algorithm 13, we see that the final

operation of HMAC­Streebog­512 that affects the carry flag isHin+K ′ mod 2512, where

K ′ = K0 ⊕ opad. This is because the functions Γ, F , X [·] and L do not affect the

carry flag. Consequently, the compression function G does not affect the carry flag.

We assume that the machine code generated from the reference C implementation of

Streebog [229] does not contain any additional operation that affects the carry flag after

the final modular addition.

If Hin and K ′ are considered to be x and y, respectively, then Hin + K ′ mod 2512

equals f 512
y (x), where fn

y (x) is the function defined in Sect. 5.3.2. Since Hin and the

carry generated by f 512
y (x) are known to the attacker, he may be able to recover some

of the most significant bits ofK ′ using passive analysis. The strength of the attacker to

alter the chosen bits of Hin enables him to perform active analysis to recover the entire

K ′ and, in turn, the knowledge ofK ′ leads to the recovery of entireK.
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5.4.1 Complexities of the Attacks

Table 5.2: Variation of the number of key bits recovered (i·l) using Algorithm 15 and the
required number of modifications ofHin in logarithmic scale (log2 τi·l) with the possible
number of chosen bit­flips (l) where i = 1.4, 1.48, 1.57, 1.6, 1.67 and i · l≤ 512

l 1.4l log2 τ1.4l 1.48l log2 τ1.48l 1.57l log2 τ1.57l 1.6l log2 τ1.6l 1.67l log2 τ1.67l
1 1 ­0.42 1 ­0.42 1 ­0.42 1 ­0.42 1 ­0.42
31 43 7.95 45 8.08 48 8.26 49 8.32 51 8.43
61 85 9.87 90 10.03 95 10.19 97 10.24 101 10.36
91 127 11.01 134 11.16 142 11.33 145 11.39 151 11.51
121 169 11.83 179 11.99 189 12.15 193 12.21 202 12.34
151 211 12.46 223 12.62 237 12.80 241 12.84 252 12.97
181 253 12.98 267 13.14 284 13.31 289 13.36 302 13.49
211 295 13.42 312 13.58 331 13.75 337 13.81 352 13.93
241 337 13.81 356 13.96 378 14.14 385 14.19 402 14.31
271 379 14.14 401 14.31 425 14.47 433 14.53 452 14.65
301 421 14.45 445 14.61 472 14.77 481 14.83 502 14.95
331 463 14.72 489 14.88 ­ ­ ­ ­ ­
361 505 14.97 ­ ­ ­ ­ ­ ­ ­ ­

Knowing Hin and carry flag, the most significant bit of K can be recovered using

passive analysis with 75% success rate. In other words, the time complexity of the

key recovery attack using passive analysis for 75% success rate will be O(2511). The

complexity of recoveringK using active analysis varies depending on the strength of the

attacker. In Sect. 5.3.3, we have already discussed the average number of modifications

and simultaneous bit­flips required to recover the bits of the unknown variable y. In

order to recover the k most significant bits ofK, Hin has to be modified τk times on an

average, where τk can be calculated as:

τk =
512−k+1∑
i=512

(
3

4
+

1

4

512−i∑
j=0

(1− 2−j)

)
.

At least 0.716k simultaneous bit­flips are required for each modification to ensure a

95% success. Therefore, if the attacker has enough resources to flip l chosen bits ofHin

simultaneously, 1.4l most significant bits of K can be recovered using Algorithm 15

with 0.95 success probability and, he can recover the remaining bits through brute force.

The time complexity to recoverK using active analysis will be χ(l)+O(2(512−1.4l)) for

a success rate of 95%, where χ(l) is the time required for τ1.4l modifications of Hin.
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Assuming that each modification takes O(α) time, χ(l) = O(α · τ1.4l). Therefore the

complexity of our active attack for a success rate of 95%will beO(α ·τ1.4l+2(512−1.4l)),

which equals O(2(512−1.4l)) if log2 α · τ1.4l ≪ 512 − 1.4l. Similarly, the respective

complexities of our attacks for the success rates of 90%, 80%, 70% and 60% will be

O(α·τ1.48l+2(512−1.48l)),O(α·τ1.57l+2(512−1.57l)),O(α·τ1.6l+2(512−1.6l)) andO(α·τ1.67l+

2(512−1.67l)). The variation of i · l and log τi·l with l, where i = 1.4, 1.48, 1.57, 1.6, 1.67,

is listed in Table 5.2.

For HMAC­Streebog­256, if |K| = 256, the 256 most significant bits of K ′ and

pad ∥ Hin will be known to the attacker as they are the padding bits. Therefore, he will

be able to compute c(256) from c(512), where c(512) is the carry flag. Hence the attack

on 512­bit addition reduces to that on 256­bit addition, which will, in turn, result in

the reduction of the attack complexity. For instance, the complexities of our passive

attack with success rate of 75% and active attack with success rate of 95% will reduce

to O(2255) and O(α · τ1.4l + 2(256−1.4l)), respectively.

If the attacker is able to flip at the most 181 and 361 chosen bits of Hin then he

will be able to recover the keys of HMAC­Streebog­256 and HMAC­Streebog­512, re­

spectively, with negligible complexity. The average number of modifications of Hin

required for the attacks on HMAC­Streebog­256 and HMAC­Streebog­512 are 212.98

and 214.97, respectively.

5.5 Validity of the Assumptions

Our passive attack ceases to exist if any of the first two assumptions made in Sect. 5.4 is

invalid. Similarly, key recovery using active analysis will be possible only if the three

associated assumptions of Sect. 5.4 are valid. Therefore, it is necessary to examine the

possibility of our assumptions in a real­world context.
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5.5.1 Extraction of the Inner Hash Hin

In [125] and [126], Lipp et al. and Kocher et al. have respectively presented two attacks,

the Meltdown attack and the Spectre attack, which enable a malicious application to ac­

cess the memory space of a different application and read its secrets by exploiting critical

vulnerabilities in modern processors. SplitSpectre [127], another speculative execution

attack, is a recent variant of Spectre attack proposed by Mambretti et al. which requires

a smaller piece of vulnerable code available in the victim’s attack surface compared to

the original attack. RAMBleed attack [128] by Kwong et al. is a more recent attack

which exploits the Rowhammer vulnerability [230] in DRAM cells to read some of the

bits in any DDR3 and DDR4 DRAM memories without accessing them. If the attacker

has physical access to the hardware, Cold Boot attack [231] is yet another method to

extract data from the RAM. The above mentioned attacks target a wide variety of plat­

forms such as personal computers, mobile devices, embedded systems and even cloud

environment. Since these attacks are based on hardware­related vulnerabilities, mitigat­

ing them without upgrading the hardware cannot be fully ensured. Moreover, efficient

variants of the known attacks or even new line of attacks unveil in the course of time.

In order to extractHin from the authentication device, the attacker can use an unpriv­

ileged spy software within the same device which utilises one of the above mentioned

attacks to read the memory. Being a message digest, it is reasonable to assume that the

extraction ofHin frommemory will not be as difficult as that of a secret key. Though the

secret key can be secured against such attacks by processing them outside the memory

[232, 233, 234, 235, 236, 237], such protection mechanisms are not applicable to Hin.

5.5.2 Detection of Carry

The 512­bit addition in Streebog will be mostly implemented as a ripple carry adder

where the word size of the full adders will be equal to or less than that of the accumu­

lator of the underlying processor as in [229]. If they are equal, carry flag will be set
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when a carry is generated. An attacker who has the necessary privileges to execute any

code of his choice in the authentication device will be able to detect the carry flag by

executing the add with carry (ADC) assembly instruction. If this method is not feasi­

ble, he can use techniques similar to those explained by Fouque et al. which will either

exploit the electromagnetic side­channel of the device [133] or inject a fault during the

computation of the carry [132] to get the carry information. It is easier to detect the carry

flag soon after the MAC generation rather than while it is under generation. But, if the

above mentioned techniques are performed in synchronisation with the intermediate ad­

ditions which implement the targeted addition, the attacker will be able to detect all the

intermediate carries which, in turn, will reduce the complexities of our attacks as each

intermediate addition can be attacked separately.

If theword size of the adder is less than that of the accumulator, carry flag or overflow

flag will never be affected. Nevertheless, the intermediate carries will be stored in the

buffer as in [229] to forward them to the adjacent adders. The attacker can extract them

from the buffer using one of the methods mentioned in Sect. 5.5.1.

5.5.3 Chosen Bit Modification of Inner Hash Hin

In [230], Kim et al. showed the Rowhammer vulnerability that causes bits in the rows

adjacent to the frequently activated rows of a DRAM memory to flip without access.

Cojocar et al. [238] demonstrated that multiple bits could be flipped in a chosen manner

exploiting this vulnerability and the bits tend to flip to the same value of the bits of the

corresponding column in adjacent rows. Very recently, Kwong et al. [128] described

and demonstrated the steps to be followed to flip the bits of a target data in the DRAM

memory. An unprivileged spy software, similar to that used for the extraction of Hin,

can be used for its modification too, using the Rowhammer attack.

Another method to flip the bits of Hin is by injecting multiple single­bit faults us­

ing multi­spot lasers, as mentioned in [239]. But the number of simultaneous bit­flips

induced utilising this method will be lesser compared to the earlier one, which leads to
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an increased attack complexity. Still, if the word size of the adders used in the ripple

carry adder is small, which will be the case when HMAC­Streebog is implemented in an

embedded system, and the intermediate carries are known, the complexity of our attack

can be reduced by applying Algorithm 15 on each adder seperately instead of 512­bit

ripple carry adder.

5.6 Conclusions

In this Chapter, we have shown side­channel attacks on HMAC­Streebog which is a

HMAC algorithm based on the Russian standard Streebog and defined in RFC 7836.

Our attacks use carry flag as the side­channel to recover the keys with complexities

lesser than that of exhaustive search. Under the assumption that the output of the inner

hash function of HMAC­Streebog is known to the attacker, our passive side­channel

attacks on HMAC­Streebog­256 and HMAC­Streebog­512 can recover one bit of the

respective keywith 75% success rate. We have also presented fault­assisted side­channel

attacks on HMAC­Streebog­256 and HMAC­Streebog­512 which can recover the keys

with 212.98 and 214.97 average number of fault injections, respectively, for 95% success

rate under the assumption that the attacker is able to simultaneously flip at the most 181

chosen bits for HMAC­Streebog­256 and 361 chosen bits for HMAC­Streebog­512. We

have highlighted some of the latest hardware vulnerabilities which make the HMAC­

Streebog implementations vulnerable to our attacks. To the best of our knowledge, our

passive attack is the best non­fault attack on HMAC­Streebog­256. Compared to the

other fault attacks on HMAC­Streebog, our attacks have a larger temporal window for

fault injection, target a more accessible location and cannot be mitigated with output

redundancy countermeasures. The attacks presented here emphasises the importance of

preventing the side­channel leakage of carry bits.



Chapter 6

Revisiting the Software­Efficient

Stream Ciphers RCR­64 and RCR­32

6.1 Introduction

The Py family of stream ciphers. In 2005, the first members of the Py family of

synchronous stream ciphers designed by Biham and Seberry — the Py and the Py6 —

were submitted to the ECRYPT eSTREAM project in the category of software­based

stream ciphers [25]. The internal states of the ciphers were primarily constituted by

rolling arrays making them structurally similar to RC4 [21]. Owing to the impressive

speed in software and being one of the fastest eSTREAM “Profile 1” candidates

[153], the cipher Py gained much attention. In 2006, Paul et al. reported distinguish­

ing attacks against Py [240], and its complexity was further reduced by Crowley

[241]. To rule out these attacks, the designers proposed the cipher Pypy [152]. In

2007, Wu and Preneel showed key recovery attacks against the ciphers Py, Pypy

and Py6 based on a weakness found in their identical IV setup algorithms [242]. In

response to these attacks, which were later improved by Isobe et al. [243], the designers

tweaked the IV setup of the ciphers leading to the design of TPy, TPypy and TPy6 [151].

124
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The RCR ciphers. Immediately after the publication of TPy, TPypy and TPy6 in

2007, they were subjected to various distinguishing attacks [244, 245, 145, 246]. In

a paper discussing related­key distinguishers on the ciphers TPy and TPypy, Sekar

et al. presented the stream ciphers RCR­64 and RCR­32 by modifying TPy and

TPypy, respectively [145]. The RCR­64 (resp. RCR­32) and the TPy (resp. TPypy)

have identical key/IV setup algorithms. They differ in the round functions where

variable rotations are replaced with constant rotations. Sekar et al. showed that these

modifications not only eliminate the weaknesses of the ciphers TPy and TPypy but also

make them marginally faster [145].

Motivation behind this work. The RCR ciphers are conjectured to be the strongest

among the Py family of ciphers. In [146], Ding et al. reported distinguishing attacks on

the RCR ciphers but these have been shown to be flawed in [147]. The distinguishers

were based on non­existent keystream biases. Other than these, we do not find any

attack reported on the RCR ciphers, although a number of attacks have been published

on the other members (e.g., Py, TPypy, TPy6) of the Py family of ciphers. Furthermore,

the use of rolling arrays and simple operations such as modular addition, bitwise XOR

and circular shifts make the RCR ciphers remarkably efficient. In our preliminary

analysis, we observed that the RCR­64 is one of the fastest stream ciphers available

today. These reasons motivated us to revisit the RCR ciphers to perform a detailed

security analysis and performance evaluation.

Contributions of this work. In [145], Sekar et al. did not make any specific recom­

mendation on the key/IV size of the RCR ciphers, although the ciphers are as such able

to support a wide range of key/IV sizes. In an attempt to further enhance the security

of the RCR ciphers, we recommend using them with 256­bit keys and 384­bit IVs. We

justify this recommendation in this Chapter.

In order to examine whether the RCR ciphers satisfy the expected statistical prop­
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erties of an ideal cipher, we analysed their output sequences using the NIST statistical

test suite [247]. We also performed the structural analysis of the RCR ciphers using six

statistical tests proposed by Turan et al., which examine the key/IV setup and keystream

generation algorithms of synchronous stream ciphers [248]. Besides, using the internal

state diffusion test, which is proposed in this Chapter, we also verified whether the key

and the IV correlate to the RCR ciphers’ internal state. None of the tests could tell apart

the RCR ciphers from a true random bit generator (TRBG).

Our security analysis suggests that the RCR ciphers are resistant to differential and

linear cryptanalysis owing to their invertible IV setup algorithms and large secret S­

boxes. Similarly, the ciphers are conjectured to be immune to algebraic cryptanalysis

and cube attacks because of their large internal states which are thoroughly mixed dur­

ing the key/IV setup. They preclude time­memory­data trade­off attacks with the rec­

ommended input sizes. Furthermore, the non­zero constant rotation that replaced the

variable rotation used in the encryption phase of the TPy and the TPypy secure the RCR

ciphers against classes of distinguishing attacks. We also present protected software

implementations of RCR­64 and RCR­32 that are secure against (cache­)timing attacks

and some prominent processor flag attacks.

In this Chapter, we also evaluate the performances of the RCR ciphers using the

SUPERCOP tool kit developed by the eBACS project [155]. Our tests suggest that the

protected implementations of RCR­64 and RCR­32 encrypt long messages with 256­bit

keys on Intel Core­i5 680 processor at speeds of 2.56 and 4.06 cycles per byte, respec­

tively. The protected implementation of the RCR–64 outperform some of the popular

stream ciphers and block ciphers (in counter mode) like SIMON [212], SPECK [212],

SNOW2.0 [18], AES [30] implemented without the AES­NI instruction set, Sosemanuk

[156] and HC­256 [23], in encrypting long messages. Consequently, it appears that the

RCR ciphers are well suited for streaming applications. To the best of our knowledge,

this is the first work to present a detailed study on the security and performance of the

RCR ciphers.
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Organisation of the Chapter. The remaining Chapter is organised as follows. In

Sect. 6.2, we provide the specifications of the RCR ciphers. The results of our statistical

analysis of the ciphers are discussed in Sect. 6.3. Our security analysis of the protected

implementations of the RCR­64 and the RCR­32 are detailed in Sect. 6.4. We evaluate

the performance of the RCR ciphers in Sect. 6.5 and conclude in Sect. 6.6.

6.2 Specifications of the Ciphers

6.2.1 RCR­64 and RCR­32

The internal states of the RCR ciphers are composed of a permutation P of 256 el­

ements, 260­element array Y where each element is a 32­bit word and a 32­bit vari­

able s. The RCR­64 and RCR­32 use identical key/IV setup which was originally de­

signed for the ciphers TPy and TPypy (see Algorithms 16 and 17). Using two inter­

mediate variables — a fixed permutation of 256 elements denoted by IP and a vari­

able EIV whose size is equal to that of the IV — the key/IV setup mixes the se­

cret key and the IV to generate the initial internal state. During an iteration of the

keystream generation phase, the round functions of the RCR­64 and RCR­32 — de­

noted by R1 and R2, respectively — update the internal states and generate pseudo­

random keystream words of size 64 bits and 32 bits, respectively (see Algorithm 18).

While updating the internal state, the IV setup and the round function use the function

rotate(·) to roll the arrays as rotate(S) = {S[1], S[2], . . . , S[n − 1], S[0]}, if S is the

array {S[0], S[1], . . . , S[n − 2], S[n − 1]}. Figure 6.1 provides a visual representation

of the round functions of the RCR ciphers.

6.2.2 Recommended Key and IV Sizes

The key setup algorithms of the RCR ciphers, which have been adopted from the Py

family of ciphers, are designed to use keys of size ranging from 1 to 256 bytes (in steps
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Algorithm 16 Key setup
Require: A key, an IV and an initial permutation
Ensure: An array Y [−3,−2, ..., 256]

kb = size of the key k in bytes;
ivb = size of the IV in bytes;
L = -3; H = 256;

s = IP[kb - 1];
s = (s << 8) | IP[(s ^ (ivb - 1)) & 0xFF];
s = (s << 8) | IP[(s ^ k[0]) & 0xFF];
s = (s << 8) | IP[(s ^ k[kb - 1]) & 0xFF];

for(j = 0; j < kb; j++)
{

s = s + k[j]; s0 = IP[s & 0xFF];
s = ROTL32(s, 8) ^ (u32) s0;

}

for(j = 0; j < kb; j++)
{

s = s + k[j]; s0 = IP[s & 0xFF];
s ^= ROTL32(s, 8) + (u32) s0;

}

/*Initialise the array Y*/
for(i = L, j = 0; i <= H; i++)
{

s = s + k[j]; s0 = IP[s & 0xFF];
Y[i] = s = ROTL32(s, 8) ^ (u32) s0;
j = j + 1 (mod kb);

}

of a byte). Nevertheless, we recommend using 256­bit keys with the RCR ciphers due

to the following two reasons. Firstly, according to the latest NIST recommendation, the

security strength of a cryptographic algorithm, which is ideally equal to the key size in

the case of a symmetric­key cipher, must be at least 112 bits [249]. Secondly, to provide

equivalent security even against post­quantum adversaries, a rule of thumb is to double

the key length due to Grovers’ algorithm [250].

Similarly, the IV setup algorithms of the RCR ciphers are designed to use IVs of size

ranging from 1 to 64 bytes (in steps of a byte). However, to prevent time­memory­data

trade­off attacks, Dunkelman and Keller recommend that the IV size must be 1.5 times

the key size [251]. Therefore, using a 384­bit IV with the RCR ciphers is recommended

when the key size is 256 bits. Since the upper bound of the IV size of RCR ciphers
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Algorithm 17 IV setup
Require: The Y and the IV
Ensure: The arrays Y [−3,−2, ..., 256], P [0, 1, ..., 255] and the variable s

/*Create an initial permutation*/
ivb = size of IV in bytes;
L = -3; H = 256;

v = IV[0] ^ ((Y[0] >> 16) & 0xFF);
d = (IV[1 (mod ivb)] ^ ((Y[1] >> 16) & 0xFF)) | 1;

for(i = 0; i < 256; i++) { P[i] = IP[v]; v += d; }

/*Initialise s*/
s = ((u32) v << 24) ^ ((u32) d << 16) ^ ((u32) P[254] << 8) ^ ((u32) P

[255]);
s ^= Y[L] + Y[H];

/*Loop A: Mix the IV*/
for(i = 0; i < ivb; i++)
{

s = s + IV[i] + Y[L + i];
EIV[i] = s0 = P[s & 0xFF];
s = ROTL32(s, 8) ^ (u32) s0;

}

/*Loop B: Update EIV*/
for(i = 0; i < ivb; i++)
{

s += EIV[i + ivb - 1 (mod ivb)] + Y[H - i];
s0 = P[s & 0xFF];
EIV[i] += s0;
s = ROTL32(s, 8) ^ (u32) s0;

}

/*Loop C: Update the rolling arrays and the variable s*/
for(i = 0; i < 260; i++)
{

x0 = EIV[0] = EIV[0] ^ (s & 0xFF);
rotate(EIV);
swap(P[0], P[x0]);
rotate(P);
s = ROTL32(s, 8) + Y[H];
Y[L] += s ^ Y[x0];
rotate(Y);

}

s = s + Y[26] + Y[153] + Y[208];
if(s == 0) { s = (kb * 8) + ((ivb * 8) << 16) + 0x87654321; }

is 64 bytes as per the design, the key size cannot be more than 42 bytes, going by the

recommendation of Dunkelman and Keller.
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Algorithm 18 Round functions: R1 andR2

Require: Y [−3,−2, ..., 256], P [0, 1, ..., 255] and a 32­bit variable s
Ensure: A pseudorandom output Z

swap(P[0], P[Y[185] & 255]);
rotate(P);

s = s + Y[P[72]] - Y[P[239]];
s = ROTL32(s, 19);

/*Skip the next step for R2*/
Z = ((ROTL32(s, 25) ^ Y[256]) + Y[P[26]]);

Z = Z ∥ ((s ^ Y[-1]) + Y[P[208]]);

Y[-3]=(ROTL32(s, 14) ^ Y[-3]) + Y[P[153]];
rotate(Y);

6.3 Statistical Analysis

One of the foremost objectives of an ideal stream cipher is to generate keystream bits

that are distributed uniformly at random for a randomly chosen key. Therefore, the

binary sequences generated using a secure stream cipher and a TRBG should be statis­

tically alike. Similarly, the internal state of a stream cipher after the key/IV setup and

the keystream generated from it should not be correlated to the key, the IV, or even to

each other. The techniques used to examine whether RCR­64 and RCR­32 satisfy these

statistical properties and their results are discussed in this Section. For all the tests, the

ciphers were instantiated with 256­bit keys and 384­bit IVs.

6.3.1 Keystream analysis

The randomness properties of the output sequences generated by the RCR ciphers were

analysed using the following tests available in the NIST statistical test suite: frequency,

block frequency, runs, longest run, binary matrix rank, spectral, non­overlapping tem­

plate matchings, overlapping template matchings, universal, linear complexity, serial,

cumulative sums, approximate entropy, random excursions and random excursions vari­

ant [247].
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Figure 6.1: Visual representation of the round functions of the RCR ciphers, where (Y j ,
P j , sj) and Zj are the internal state at the beginning of jth round and the output word
generated from it, respectively
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Table 6.1: The results of the NIST statistical tests on the keystreams generated by the
RCR ciphers, where p is the proportion of the sequences that passed the test

RCR­64 RCR­32
Statistical test p P­value Result p P­value Result

Frequency 0.986 0.258307 Pass 0.993 0.202268 Pass
Block frequency 0.989 0.883171 Pass 0.989 0.927677 Pass
Runs 0.992 0.858002 Pass 0.987 0.626709 Pass
Longest run 0.99 0.339271 Pass 0.987 0.538182 Pass
Binary matrix rank 0.991 0.279844 Pass 0.987 0.039329 Pass
Spectral 0.989 0.027313 Pass 0.987 0.587274 Pass
Overlapping template 0.986 0.480771 Pass 0.984 0.133404 Pass
matchings
Universal 0.991 0.123755 Pass 0.989 0.809249 Pass
Linear complexity 0.992 0.930026 Pass 0.993 0.922855 Pass
Serial 0.989 0.279844 Pass 0.989 0.284024 Pass
Cumulative sums 0.983 0.092041 Pass 0.980 0.380407 Pass
Approximate entropy 0.992 0.532132 Pass 0.990 0.626709 Pass
Random excursions 0.985 0.026203 Pass 0.984 0.431143 Pass
Random excursions 0.980 0.012577 Pass 0.982 0.102526 Pass
variant

Let us consider the hypothesis test given by the following.

• Null hypothesis: Output sequence of the cipher is random.

• Alternative hypothesis: Output sequence of the cipher is nonrandom.

For each cipher, 1000 keystream sequences of length 220 bits were generated using

randomly chosen key/IV pairs.1 These binary sequences were given as input to the NIST

test suite. According to the evaluation strategy of the test suite, the following conditions

have to be satisfied by the cipher to pass each test:

1: At least 980 out of the 1000 keystream sequences have to pass the test because

the proportion of sequences generated by a TRBG for which the test accepts H0

has an expected value of 0.99 with a lower bound of 0.98 if the significance level

is 0.01.
1The 640000­bit output of AESk(C) forms 1000 random key/IV pairs where AESk is AES encryp­

tion in counter mode with a random 256­bit key k — generated by /dev/random — and C is {0}640000.
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2: The P­values calculated for the sequences must be uniformly distributed between

0 and 1. If we test the distribution of P­values using the chi­square goodness­

of­fit test, with ten sub­intervals between 0 and 1, the P­value calculated for the

resultant test statistic must be greater than 0.00001.

The results of the NIST statistical tests on the keystreams generated by the RCR­64 and

RCR­32 are listed in Table 6.1. We can see that these tests could not tell apart the RCR

ciphers from a TRBG.

6.3.2 Structural analysis

In [248], Turan et al. proposed six statistical tests for analysing synchronous stream ci­

phers. Among them, four tests — key­keystream correlation, IV­keystream correlation,

frame correlation, and diffusion — intend to detect the correlations between the key/IV

and a part of the keystream. The remaining two tests — IV­internal­state correlation and

internal­state­keystream correlation — are used to evaluate input/output correlations

with the internal state. In addition to these tests, we propose the internal state diffusion

test which verifies whether the key and the IV are correlated to the internal state. Using

these tests, we performed our structural analysis of RCR ciphers.

Key­keystream correlation test. The correlation between the key and the first 256

bits of the keystream was evaluated with this test. For some fixed IV, 220 keystreams,

each 256 bits long, were generated using 220 keys chosen uniformly at random. Each

key was XORed with its corresponding keystream, and the Hamming weights of these

XOR sums were computed. For an ideal cipher, the Hamming weight should follow the

binomial distribution with n = 256 and p = 0.5.

IV­keystream correlation test. This test was used to evaluate the correlation between

the IV and the first 384 bits of the keystream. For some fixed key, 220 keystreams,

each of length 384 bits, were generated using 220 IVs chosen uniformly at random.
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The keystreams were XORed with the respective IVs, and the Hamming weights of

these XOR sums were computed. Similar to the key­keystream correlation test, the

Hamming weights should follow the binomial distribution with n = 384 and p = 0.5

for the ciphers to be ideal.

Frame correlation test. The correlation between the keystream frames generated using

similar IVs was examined using this test. Let ivj := r ∥ j for j = 0, 1, . . . , 220 − 1,

where r and j are the fixed 364 bits and variable 20 bits of the IV, respectively, form the

set of similar IVs.2 For some fixed key and r, 220 keystreams (each of length 256 bits)

were generated using the similar IVs. A binary matrix of size 220 × 256 was created

whose jth row contained the keystream bits generated using ivj . The column weights

of the matrix, which were computed by counting the number of ones in each column,

follow the binomial distribution with n = 220 and p = 0.5 in the ideal case. Since n

is large, the binomial distribution can be approximated to the normal distribution with

mean 219 and variance 218.

Diffusion test. Using this test, we examined the diffusion property of each bit of the

key and the IV on the keystream. A 256­bit reference keystream was generated using a

randomly chosen reference key/IV pair of length 640 bits. To analyse the effect of each

bit of the key/IV pair on the keystream, difference vectors were generated by XORing

the reference keystream with each keystream generated using the key/IV pairs that

differ from the reference key/IV pair by a single bit. A binary matrix of size 640× 256

was created using these difference vectors. This process was repeated 210 times, and

the generated matrices were added in real numbers. For an ideal cipher, each element

of the resultant matrix, which is the sum of 210 random bits, is expected to follow the

binomial distribution with n = 210 and p = 0.5.

2There are 220 similar IVs for an arbitrary 364­bit r.
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IV­internal­state correlation test. This test, which is very similar to the frame

correlation test, helps in analysing the effect of similar IVs on the internal state of the

cipher. For some fixed key, 220 internal states were generated using the similar IVs,

as done in frame correlation test, and from them, a binary matrix of size 220 × 10400

was created. The column weights of the matrix have to ideally follow the normal

distribution with mean 219 and variance 218.

Internal­state­keystream correlation test. For an ideal cipher, the Hamming weight

of the internal state should not be correlated to the Hamming weight of the keystream.

This feature was examined using the internal­state­keystream correlation test. We know

that two components of the internal state of the RCR ciphers, namely Y and s, are

distributed uniformly at random, and the third component P is a random permutation.

Without using the key/IV setup, the internal state was initialised in such a way that P

was a random permutation, and Y and s contained random data with low (lesser than

4000) or high (greater than 6000) Hamming weights. From 210 such internal states,

keystream sequences of length 10400 bits were generated. In case of an ideal cipher,

the Hamming weights of these keystreams must follow the binomial distribution with

n = 10400 and p = 0.5. Since n is large, the binomial distribution can be approximated

to the normal distribution with mean 5200 and variance 2600.

Internal state diffusion test. Each bit of the key and the IV of an ideal cipher should

affect its entire internal state. To analyse this feature, 210 reference internal states

were generated using 210 randomly chosen reference key/IV pairs (each of length 640

bits). A difference vector can be generated by XORing the reference internal state

with the internal state generated from a key/IV pair that differs from the reference

key/IV pair by a single bit. For each reference key/IV pair, 640 difference vectors

were generated. As in the case of diffusion test, 210 binary matrices, each of size

640 × 256, created from 210 reference key/IV pairs were added in real numbers.
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Table 6.2: The mean P­value computed for each structural analysis test on RCR­64 and
RCR­32

Test RCR­64 RCR­32

Key­keystream correlation 0.50636 0.46986
IV­keystream correlation 0.51372 0.51380
Frame correlation 0.45901 0.49905
Diffusion 0.35263 0.34547
IV­internal­state correlation 0.46097 0.48847
Internal­state­keystream correlation 0.43934 0.43854
Internal state diffusion 0.43759 0.46512

Each element of the resultant matrix, which is the sum of 210 random bits, are ex­

pected to follow the binomial distribution with n = 210 and p = 0.5 if the cipher is ideal.

The RCR­64 and RCR­32 were subjected to each of these correlation tests 100 times,

and the chi­square goodness­of­fit test was used to verify if the observed data followed

the expected distributions. Let us consider the hypothesis test given by the following.

• Null hypothesis: The observed data follow the expected distribution.

• Alternative hypothesis: The observed data do not follow the expected distribution.

The mean P­value computed for each structural analysis test on RCR­64 and RCR­32

is listed in Table 6.2. The value must be greater than or equal to 0.01 to conclude that

the observed data follow the expected distribution. From the results, it is clear that the

key/IV, the internal state and the keystream of the RCR ciphers are uncorrelated.

6.4 Security Analysis

6.4.1 Resistance to differential cryptanalysis

Differential cryptanalysis of synchronous stream ciphers often concern the effect of dif­

ferences in the IVs on the internal state or the keystream. In [242], Wu and Preneel

found that a pair of IVs with a certain difference can initialise the stream cipher Py [25]



REVISITING THE SOFTWARE­EFFICIENT STREAM CIPHERS RCR­64 AND RCR­32 137

to identical internal states. The same applies to Pypy [25, 152]. Using such pairs of IVs,

key recovery attacks can be built on Py and Pypy [242, 243]. The differential attacks

originated due to an additional mixing loop in the IV setup to mix the IV into the internal

state. The additional loop was removed when Biham and Seberry tweaked the weak IV

setup of the Py and Pypy [151]. The designers also ensured that the tweaked IV setup is

invertible to prevent any collisions in the internal state [151]. Sekar et al. adopted the

modified IV setup for the RCR ciphers. Our investigations indicate that the modified IV

setup resists differential attacks of a similar nature as those of [242] and [243].

We see from Algorithm 17 that any difference introduced in the IV propagates im­

mediately to s through the loops A and B. Later, during each iteration of loop C, the

differences in s affect P and Y . Figure 6.2 illustrates the propagation of the XOR dif­

ference through the loops A and B.3 The permutation P , which is a randomly chosen

8×8­bit S­box, make it challenging to model the differential propagation. The expected

value of the highest probability of a (non­trivial) differential characteristic is at the most

m/2m−1 for a randomly chosen m ×m­bit bijective mapping [252]. Therefore the ex­

pected maximum probability of the differential characteristic for P is 2−4. Similarly,

the XOR differential probability of the modular addition is upper bounded by 2−β if the

number of bit positions, excluding the most significant bit, at which the input/output

differences of the modular addition differ equals β [253]. For an ivb­byte IV, the XOR

difference introduced at the (j+1)th byte position propagates through P for ivb− j and

ivb times in loop A and B, respectively. Similarly, there are ivb active modular addi­

tions affecting the differential propagation through loop B. Therefore, if the IV size is 48

bytes, the upper bound of the differential probability across the loops A and B is given

by 2−4(48−j)−48(β+4), where 0 ≤ j ≤ 47 and 0 ≤ β ≤ 31. We can see that the probability

of the best differential characteristic across the loops A and B is upper bounded by 2−244,

under the assumption that β equals one. The propagation of the differences through Y ,

which acts as an 8× 32­bit S­box, further lowers the differential probability, making it
3To simplify the analysis, the IV mixing operation of the loop A of Algorithm 17 is assumed to be

linear.
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seemingly impossible to build differential attacks faster than exhaustive key search.

Figure 6.2: Propagation of the XOR difference△s,0 := δj,0 through the loops A and B of
Algorithm 17 to (△s,t+ivb+1,△EIV ), where δj,0 is the difference at the (j + 1)th byte of
the IV, ivb is the IV size in bytes,△s,i+1 and δj,i+1 are the differences in s and the output
of P [·], respectively, after the (i+ 1)th step (0 ≤ i ≤ t+ ivb+ 1; t = ivb− 1− j) and,
△EIV and △EIV,i are the differences in EIV and its (i + 1)th byte (0 ≤ i ≤ ivb − 1),
respectively

6.4.2 Resistance to linear cryptanalysis

The linear cryptanalysis of stream ciphers, devised by Golić [116], exploits the existence

of linear approximations between some keystream bits and the internal state bits or the

key/IV bits to recover the secret internal state or the key. Even if it is not possible

to recover the internal state or the key, linear cryptanalysis might be useful in finding

good distinguishers against the ciphers. The keystream generation processes of the RCR
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ciphers involve 8 × 8­bit and 8 × 32­bit key­dependent secret S­boxes, namely P and

Y , respectively. The ciphers Blowfish [38] and HC­256 [23], which use 8× 32­bit and

32× 32­bit secret S­boxes, respectively, are resistant to linear cryptanalysis due to their

large secret S­boxes. Moreover, since P and Y are updated during each round of the

keystream generation process, it will be difficult to find linear relations linking the input

and output bits of the S­boxes. Due to these reasons, we conjecture that the RCR ciphers

are secure against linear cryptanalysis.

6.4.3 Resistance to algebraic cryptanalysis

Several stream ciphers, whose operations can be represented as a system of multi­variate

algebraic equations, have been found to be vulnerable to algebraic attacks. The adver­

sary solves the system of equations to recover the secret key or the internal state. It is

powerful against ciphers with simple algebraic structures such as functions of low alge­

braic degrees. Algebraic attacks are therefore common against LFSR­based stream ci­

phers with small internal states such as LILI­128, E0, Toyocrypt, SOBER­t32, SOBER­

t16, SSG and Trivium [103, 105, 254, 255, 256]. Whereas, array­based ciphers like

RC4 [21], RC4A [257], RC4+ [258], VMPC [259], IA, IBAA, ISAAC [260], NGG

[261], GGHN [262], Spritz [22], HC family [23, 24] and Py family [152, 25, 151], which

have large internal states are not vulnerable to algebraic cryptanalysis, to the best of our

knowledge. Hence, being array­based ciphers with large internal states of size 10,400

bits each, it is difficult to construct algebraic attacks on the RCR ciphers too.

6.4.4 Resistance to cube attacks

The cube attack is a cryptanalytic technique, used against symmetric­key cryptosys­

tems, proposed by Dinur and Shamir [263]. Let k := (k1, k2, . . . , kn) and v :=

(v1, v2, . . . , vm) be an n−bit secret key and an m−bit IV, respectively, and f(k, v) be

a polynomial function over GF(2) that generates the first keystream bit of a stream ci­

pher instantiated with k and v. Let CI — referred to as a cube — be the set of 2|I|



140 REVISITING THE SOFTWARE­EFFICIENT STREAM CIPHERS RCR­64 AND RCR­32

values of v such that the variables {vi1 , vi2 , . . . , vi|I|} take all possible combinations of

binary values and the remaining variables are fixed to some arbitrary binary values,

where I = {i1, i2, . . . , i|I|} ⊂ {1, 2, . . . ,m}. If f(k, v) can be decomposed as:

f(k, v) = tI · p(k, v) + q(k, v) ,

where tI = vi1 · vi2 · . . . · vi|I| , p(k, v) — known as a superpoly — is a polyno­

mial independent of {vi1 , vi2 , . . . , vi|I|} and q(k, v) misses at least one variable from

{vi1 , vi2 , . . . , vi|I|}, then we get:

⊕
CI

f(k, v) =
⊕
CI

tI · p(k, v) +
⊕
CI

q(k, v)

= p(k, v) . (6.1)

The core idea of the cube attack is to detect some superpolies and exploit them to re­

cover k. The attack works in the following two phases: preprocessing and online. In the

preprocessing phase, the attacker searches for the superpolies p(k, v) and in the online

phase, the set of equations generated using (6.1) are solved to recover the secret key.

The success of a cube attack depends on the detection of a superpoly whose algebraic

degree is low enough to enable efficient recovery of the key bits. The algebraic degrees

of the polynomials representing the RCR ciphers will be too large considering the ex­

tensive mixing of their internal state variables during the key/IV setup through multiple

rounds of nonlinear operations. As it will be computationally hard to detect low degree

superpolies in such cases, the RCR ciphers must be resistant to cube attacks.

6.4.5 Resistance to time­memory­data trade­off (TMDTO) attacks

TMDTO attack is a generic technique applicable to both block ciphers and stream ci­

phers. It inverts a one way function f at a single point in the range of the function using

the following two phases:
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1: A preprocessing phase during which the attacker constructs several tables which

store a set of starting points, chosen from the range of f , and their correspond­

ing ending points, generated by recursively applying f or its variants for a fixed

number of rounds.

2: An online phase during which the attacker searches the precomputed tables to

recover the unknown input to f that generated the real­time data.

The five parameters that define a TMDTO attack are the size of the search spaceN ,

the time required by the preprocessing phaseR, the amount of memory required to store

the tablesM , the time required by the online phase T and the amount of real­time data

D.

The objective of the first TMDTO attack on stream ciphers, independently proposed

by Babbage [264] and Golic [265], was to invert the function that maps the internal state

of the cipher of size log2(N) bits to log2(N) keystream bits. The D possible windows

of log2(N) consecutive bits taken fromD+ log2(N)− 1 keystream bits constituted the

real­time data needed for this attack. The trade­off curve of this attack was defined by

TM = N andR = M for any 1 ≤ T ≤ D. This attack was later improved by Biryukov

and Shamir by reducing the number of matrices by a factor of D [266]. This resulted

in a better trade­off curve TM2D2 = N2 for R = N/D and D2 ≤ T ≤ N . Since

the internal states of the RCR ciphers are of size 10,400 bits, neither of these TMDTO

attacks will be better than the exhaustive key search.

Another type of TMDTO attack on stream ciphers was proposed by Hong and Sarkar

[267], which focussed on inverting the function that maps the key/IV pair to keystream

bits of size log2(κ)+ log2(ν) bits, where log2(κ) and log2(ν) are the sizes of the key and

the IV in bits, respectively. Being similar to Biryukov and Shamir’s attack and having a

search space constituted by the key space and IV space, Hong and Sarkar’s attack has the

trade­off curve TM2D2 = κ2ν2, for T ≥ D2. In order to exploit the fact that the IV is

publicly known, Dunkelman and Keller proposed a new approach to Hong and Sarkar’s

attack by defining a slightly different function f which maps the key to keystream bits,



142 REVISITING THE SOFTWARE­EFFICIENT STREAM CIPHERS RCR­64 AND RCR­32

for a fixed IV [251]. During the preprocessing phase of this attack, ν/D IVs are chosen

and using the function corresponding to each IV, a set of tables is generated. When a

keystream is available for one of the chosen IVs, the attacker applies the online phase of

the TMDTO attack using the tables prepared for that IV. Similar to the previous attack,

this one also has the trade­off curve TM2D2 = κ2ν2. For a stream cipher to achieve

n­bit security against TMDTO attacks, Hong and Sarkar, and Dunkelman and Keller

recommended using IVs of size n and 1.5n bits, respectively, where n is the key size

in bits. As the RCR ciphers follow these recommendations, they are resistant to the

TMDTO attacks due to Hong and Sarkar, and Dunkelman and Keller.

6.4.6 Resistance to distinguishing attacks

Distinguishing attack enables an attacker to tell apart a cipher from an ideal cipher who

exploits the biases in its output to build the distinguisher. The predecessors of the RCR

ciphers, namely the TPy and TPypy [151], are vulnerable to distinguishing attacks due

to the weaknesses in their KGAs [240, 241, 246, 245, 268]. The rotation of s in the

KGAs, given by ROTL32
(
s, ((P [116]+18)& 31)

)
, was targeted by these attacks, and the

distinguishers depend on the simultaneous occurrence of some of the following events:

P r1 [116] ≡ −18 (mod 32) , for some round r1 , (6.2)

P r2 [116] ≡ 7 (mod 32) , for some round r2 , (6.3)

P r3 [116] ≡ 0 (mod 32) , for some round r3 , (6.4)

P r4 [116] ≡ −4 (mod 32) , for some round r4 , (6.5)

P r5 [116] ≡ 3 (mod 32) , for some round r5 , (6.6)

where P r denotes the P at the beginning of rth round of encryption. The events (6.2)­

(6.6) translate to the cyclic left rotation of s by 0, 25, 18, 22 and 21 bits, respectively.

Since the RCR ciphers use a constant rotation given by ROTL32(s, 19), they preclude dis­

tinguishing attacks of the kind mentioned above. The related­key distinguishing attacks
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on the ciphers TPy and TPypy by Sekar et al. [145] are also precluded thus.

In [146], Ding et al. proposed related­key distinguishers on the Py family of stream

ciphers, including the RCR­64 and RCR­32. These appear to be the only published

attacks on the RCR ciphers. The distinguishers depend on three events, the simultaneous

occurrence of which gives: Ẑ := Z1
1(0) ⊕ Z2

1(0) ⊕ Z1
2(0) ⊕ Z2

2(0) = 0, where Zj
i is the

second output word of the jth round of encryption using the key ki (for i = 1, 2). If

any of the events does not occur, Ding et al. incorrectly assume that Pr(Ẑ = 0) = 0.5.

Consequently, they detect a bias in Ẑ, leading to related­key distinguishing attacks on

RCR–64 and RCR–32. The flawed computations by Ding et al. and the non­existence

of their keystream bias are established in [147].

Let (P r, Y r, sr) denotes the internal state at the beginning of rth round of encryption.

All the distinguishing attacks on the Py family of ciphers, including the related­key

attacks presented in [145], exploited the following weakness due to the variable rotation

of s: when certain conditions on the elements of the array P are satisfied then sr(i) equals

sr+2
(j) , where 0 ≤ i, j ≤ 31. If the variable rotation is replaced with a constant rotation,

which rotates s by some non­zero factor (say c), we get:

sr = ROTL32
(
sr−1 + Y r−1[P r[72]]− Y r−1[P r[239]], c

)
. (6.7)

If k = i− c (mod 32), we get:

sr(i) = sr−1
(k) ⊕ Y r−1[P r[72]](k) ⊕ (Y r−1[P r[239]](k))

′ ⊕ ϵr(k) ,

where ϵr is the carry term generated in (6.7), and ϵr(0) = 1. Similarly, we have:

sr+2
(j) = sr+1

(l) ⊕ Y r+1[P r+2[72]](l) ⊕ (Y r+1[P r+2[239]](l))
′ ⊕ ϵr+2

(l) , (6.8)

sr+1
(l) = sr(m) ⊕ Y r[P r+1[72]](m) ⊕ (Y r[P r+1[239]](m))

′ ⊕ ϵr+1
(m) , (6.9)

sr(m) = sr−1
(n) ⊕ Y r−1[P r[72]](n) ⊕ (Y r−1[P r[239]](n))

′ ⊕ ϵr(n) , (6.10)
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where l,m andn denote j−c (mod 32), l−c (mod 32) andm−c (mod 32), respectively.

The expression for sr(i) ⊕ sr+2
(j) that is obtained by substituting (6.9) and (6.10) in (6.8)

contains the term sr−1
(k) ⊕ sr−1

(n) which takes the value 0 with uniform probability of 0.5

when n ̸= k. Since k = i − c (mod 32), n = j − 3c (mod 32) and c ̸= 0, n will not

be equal to k when i = j. Likewise, if i ̸= j, the remaining Y ­terms in the expression

do not cancel out, under the assumption that they are uncorrelated. Therefore, by using

any non­zero constant such as c = 19, the problem behind a multitude of distinguishing

attacks on the Py family of ciphers is fixed. It is therefore conjectured that the RCR

ciphers are immune to distinguishing attacks that are faster than exhaustive key search.

6.4.7 Resistance to (cache­)timing attacks

To reduce the time required to access data from the main memory, microprocessors use

a fast and small memory known as the cache memory. It stores copies of the data from

frequently accessed locations of the main memory. A memory access operation will be

faster when the data is available in the cache than when it is unavailable. A (cache­

)timing attack exploits this time difference in memory access to recover the secret inter­

nal state of a cipher. As proposed by Osvik et al., Evict + Time and Prime + Probe are

the two methods to implement a (cache­)timing attack [137]. In Evict + Time method,

the adversary will evict a set of chosen cache blocks and measure the time taken for en­

cryption. If the time taken is more when compared to the encryption without evicting the

cache blocks, she will confirm that the chosen cache blocks have been accessed during

encryption. In the Prime + Probe method, the adversary will preload the cache before

encryption with known data and the time taken to access it after encryption is measured.

The time taken to access a block of data will be more if the corresponding cache block

has been evicted during encryption.

In general, (cache­)timing attacks are built on unprotected implementations of ci­

phers to recover the contents of the secret state, which act as indices to lookup tables

or arrays. Being array­based constructions, RCR ciphers will be vulnerable to cache at­
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tacks if not implemented securely. In order to protect against Evict + Time and Prime +

Probe methods of (cache­)timing attack, Osvik et al. recommend normalising the cache

state just before and just after the encryption by loading all the arrays into the cache

[137]. To achieve the aforementioned normalisation of the cache state in the reference

implementations of RCR–64 and RCR–32, the internal state is copied to temporary ar­

rays just before the encryption, and the updated state is copied back from the temporary

arrays after the encryption. Nevertheless, this technique provides little protection if and

when the adversary is able to access the cache memory during encryption.

6.4.8 Resistance to carry flag attacks

In [129], Kelsey et al. introduced processor flag cryptanalysis, that exploits the carry

flag or overflow flag bits of the CPU status register. Unprotected implementations of

symmetric­key ciphers such as RC5, Idea, Twofish and SPECK, the hash function Stree­

bog and some public­key cryptosystems, which use addition to operate on their secret

states, have been found to be vulnerable to carry flag attacks [129, 138, 131, 133, 132].

As conjectured in [138], the overflow flag might also be helpful in some instances to

augment the carry flag attacks as it indicates the carry at the second most significant bit

position. Similarly, the parity flag available in certain microprocessors, which indicates

if the number of ones in the binary representation of the result of an instruction is odd

or even, might also be useful in reducing the complexity of these attacks.

Since the final keystream generation step in the round functions of the RCR ciphers,

given by Z = ((s⊕ Y [−1]) + Y [P [208]]), involves the addition of two 32­bit variables

derived from the secret state, unprotected implementations of these ciphers might be

vulnerable to carry flag attacks. Therefore, it is necessary to mask the carry, overflow

and parity flag bits soon after the encryption in order to prevent the adversary from

extracting any meaningful information from them. In Chapter 4, we have discussed

two types of adversaries in carry flag cryptanalysis. The first type can detect the carry,

overflow and parity flags at the end of encryption. Under this adversarial assumption,
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the attack can be prevented by (re)setting the flags just after encryption. The second

type of adversary, who can detect the bit­flips in the flags, will overcome this protection

as the final status of the flags is known. In order to prevent such adversaries, (re)setting

the flags after encryption should be done uniformly at random.

Therefore, to protect the reference implementation of RCR ciphers from carry flag

attacks, we suggest the following masking operation immediately following the key/IV

setup and encryption:

r = r1 +
(
r2 ∥ 1 ∥ {0}30

)
, (6.11)

where r1 and r2 respectively are 32­bit and 1­bit numbers that are uniformly distributed

at random. Since the addition of 1 ∥ {0}30 with a 31­bit uniformly distributed random

number generates an outgoing carry at the 31st bit position with probability 0.5, the

overflow flag will be set randomly in (6.11). Similarly, the 1­bit addition c(31)+r1,(31)+

r2, where c(31) is the overflow flag, sets the the carry flag uniformly at random. With

the output r being uniformly distributed at random the parity flag will also be set with

probability 0.5.

Since it is feasible to distinguish between 0→ 1 and 1→ 0 bit transitions in certain

implementations [218, 219], we can consider a third type of adversary who can detect

the direction of the bit transitions in the flags under consideration. She will not be able

to detect the flags if the flag bits do not flip after the masking operation.

6.5 Performance Evaluation

We evaluated the performances of the following two implementations of each RCR ci­

pher in software: the unprotected implementation, which is vulnerable to carry flag at­

tacks, and the protected implementation, which masks the processor flags as explained

in Sect. 6.4.8. The software performances of these implementations to encrypt messages

with 256­bit keys on Intel Core­i5 680 processor were measured using the SUPERCOP
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Figure 6.3: Encryption timings (in CPU cylces) of unprotected and protected implemen­
tations of the RCR ciphers for all message lengths between 1 and 4096 bytes

tool kit developed by the eBACS project [155].4 The number of CPU cycles required to

encrypt messages of lengths ranging between 1 and 4096 bytes by the tested implemen­

tations is plotted in Figure 6.3. Since the number of clock cycles measured by the tool

includes the time taken for key/IV setup, it is evident from Figure 6.3 that the key/IV

setup of the RCR ciphers consumed nearly 5000 clock cycles on the tested platform.

The test results also prove that the extra code included in the protected implementation

to prevent processor flag attacks has only a marginal effect on the performance.

We compared the performance of the RCR ciphers with various 256­bit stream cipher

implementations available in the SUPERCOP tool kit, including the block ciphers AES

[30], SIMON [212] and SPECK [212] in counter mode. The performance in cycles per

byte to encrypt 64­byte, 576­bye, 1536­byte, 4096­byte and much longer messages on

Intel Core­i5 680 processor by these stream ciphers are listed in Table 6.3. It can be seen

that the protected and unprotected implementations of the RCR–64 outperform most

of the popular ciphers like SIMON, SPECK and SNOW 2.0 [18] (ISO/IEC standards

[270, 143, 19]), AES implemented without the AES­NI instruction set [158], Sosemanuk
4The procedure to evaluate the performance of RCR ciphers using the SUPERCOP toolkit is available

at [269].
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[156] (an eSTREAM final portfolio cipher [157]) and HC­256 [23] (the 256­bit variant

of the eSTREAM final portfolio cipher HC­128 [157]), in encrypting long messages. It

must be noted that the reduced performance while encrypting shorter messages is due

to the computationally heavy key/IV setup. The performance evaluation also proves

that the RCR–64 and RCR–32 are faster than their predecessors TPy and TPypy [151],

respectively, due to the absence of three operations — an array access, an addition and

a bitwise AND— every encryption round.

Table 6.3: The performances of a few stream ciphers, including the AES, SPECK and
SIMON in counter mode, to encrypt 64­byte, 576­byte, 1536­byte, 4096­byte and much
longer messages with 256­bit keys on Intel Core i5­680 processor measured using SU­
PERCOP toolkit

Cipher Performance in cycles per byte to encrypt
64­byte 576­byte 1536­byte 4096­byte longer
message message message message message

ChaCha8 [85] 3.50 1.51 1.30 1.27 1.24
ChaCha12 [85] 4.59 2.07 1.80 1.77 1.75
AES CTRa [30] 7.39 2.81 2.42 2.34 2.30
RCR–64b 73.97 10.30 5.62 3.68 2.52
Salsa20/12 [86] 5.33 2.87 2.60 2.55 2.53
RCR–64c 75.27 10.70 5.65 3.67 2.56
ChaCha20 [85] 6.89 3.20 2.77 2.74 2.72
TPy [151] 113.03 15.14 7.53 4.64 2.93
TPy6 [151] 51.14 8.53 5.10 3.79 2.96
CryptMT v3 [159] 13.61 5.09 4.96 3.46 3.05
SPECK128/256 CTR [212] 6.81 3.72 3.41 3.33 3.28
Salsa20/8 [86] 4.17 2.15 1.94 3.04 3.40
Salsa20/20 [86] 7.97 4.32 3.92 3.88 3.85
RCR–32b 71.61 12.13 6.96 5.10 3.92
SNOW 2.0 [18] 15.45 5.22 4.41 4.11 3.93
RCR–32c 75.19 11.93 7.11 5.30 4.06
HC­256 [23] 754.89 87.51 35.44 15.89 4.18
Sosemanuk [156] 22.67 6.44 5.00 4.45 4.19
TPypy [151] 113.22 16.35 8.87 5.89 4.21
SIMON128/256 CTR [212] 20.44 15.61 9.12 7.71 6.83
AES CTR [30] 27.31 18.86 18.18 17.96 17.82

aImplemented with AES­NI instruction
bUnprotected implementation
cProtected implementation
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6.6 Conclusions

In this Chapter, we have revisited the software­efficient stream ciphers RCR­64 and

RCR­32, designed by Sekar et al. as strengthened variants of the ciphers TPy and

TPypy, respectively. To the best of our knowledge, there are no prior published results

analysing the security and performance of the RCR ciphers in detail. To further improve

the security, we recommend that the RCR ciphers be used with 256­bit keys and 384­bit

IVs. In addition to the fact that the RCR ciphers have remained unbroken since they

were published in 2007, our thorough analysis suggests that the ciphers, especially with

the recommended input sizes, are secure against differential, linear, algebraic, cube,

time­memory­data trade­off and distinguishing attacks. We have also proposed pro­

tected software implementations of the ciphers which are secure against (cache­)timing

attacks and some processor flag attacks. Our performance analysis suggests that the

protected implementation of the RCR­64 encrypts long messages at speeds compa­

rable to some of the fastest stream ciphers available today. In conclusion, therefore,

the ciphers appear to be well suited for widespread deployment in software applications.



Chapter 7

Closing Remarks

7.1 Conclusions

In this thesis, we have dealt with the the security analysis of some of the popular

symmetric­key algorithms, including lightweight constructions, and their unprotected

implementations. To begin with, we discussed the importance of probability assump­

tions and computations in symmetric­key cryptanalysis using a case study. Then we

presented cryptanalytic results on two families of lightweight stream ciphers covered by

a US patent and unprotected implementations of a family of lightweight block ciphers

standardised by ISO/IEC for RFID devices. Next, we presented side­channel attacks on

a family of MAC algorithms defined in the Russian cryptographic standards. Finally,

we proposed ways to protect the software implementations of a family of stream ciphers

with detailed security and performance evaluations.

The first contribution of this thesis highlights some potential flaws in probability­

based cryptanalysis. As a case study, we reviewed the related­key distinguishing attacks

on the stream ciphers Py, Pypy, TPy, TPypy, RCR­64 and RCR­32 proposed in a paper

published in the Journal of Universal Computer Science in detail. We could establish

the flawed computations that led to the alleged attacks, and the non­existence of the

keystream biases detected in the Py family of stream ciphers.
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The second contribution is on the algorithmic cryptanalysis side, where we presented

distinguishing attacks on the Welch­Gong (WG) family of patented (ultra­)lightweight

stream ciphers. These ciphers were proposed to secure lightweight applications like

RFID systems and 4G/5G networks. Our attacks exploited the input­output correla­

tions in the nonlinear transformations used by these ciphers. Though our attacks on

the lightweight members of WG are certificational in nature, the attacks on the ultra­

lightweight members are highly practical, requiring fewer than 229.07 keystream samples

for nearly guaranteed success in distinguishing the ciphers from random. Due to the low

attack complexities, we could also experimentally verify our attacks on ultra­lightweight

WG ciphers. To the best of our knowledge, these are the first attacks on these ciphers.

We have also contributed on the side­channel analysis side by presenting carry flag

attacks on unprotected implementations of SPECK family of lightweight block ciphers

and HMAC–Streebog family of MAC algorithms. SPECK, an ISO/IEC standard for

RFID devices, and HMAC–Streebog, a Russian cryptographic standard, use modular

addition making them vulnerable to carry flag attacks. This is a fairly well­known tech­

nique originally proposed by Kelsey et al. [129] and thoroughly explored in a few papers

[131, 132, 133, 134]. Nevertheless, to the best of our knowledge, this thesis presents

the first results analysing the resistance of unprotected implementations of SPECK and

HMAC­Streebog to carry flag cryptanalysis.

Being an ISO standard and designed by the researchers of the NSA, SPECK is a

potential candidate for wide­scale deployment in lightweight applications. Our attacks,

which work on the full SPECK, are comparatively more feasible than the other attacks

applicable on the full ciphers, which require fault injections, due to the weaker assump­

tions we make. The thesis has also discussed the details of the vulnerable implementa­

tions of SPECK ciphers and proposed a countermeasure to preclude our attacks.

We presented two types of side­channel attacks on HMAC­Streebog: passive and

active. Our passive attacks, which assume that the inner hash of the HMAC and the

carry flag at the end of MAC generation are known to the attacker, can recover one
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bit of the key with 75% success rate. Whereas, our fault­assisted side­channel attacks

on HMAC­Streebog, which additionally require the attacker to flip a set of chosen bits

of the inner hash, can recover the key in real time. To the best of our knowledge, our

passive attack is the best non­fault attack on HMAC­Streebog­256. Our fault­assisted

side­channel attacks have a larger temporal window for fault injection, target a more

accessible location and cannot be mitigated with output redundancy countermeasures

when compared to the other fault attacks on HMAC­Streebog.

We have also devoted a chapter of this thesis to the study of securing software im­

plementations of a family of symmetric­key ciphers. Even though the stream ciphers

RCR­64 and RCR­32 have remained unbroken since they were published in 2007, we

are the first to analyse their security and performance in such a comprehensive detail,

to the best of our knowledge. The RCR ciphers are designed to support a wide range of

key/IV sizes, without any specific recommendation from the designers. We have shown

that the RCR ciphers are best used with 256­bit keys and 384­bit IVs. Based on our thor­

ough analysis, the ciphers, especially with the recommended input sizes, are found to be

secure against differential, linear, algebraic, cube, time­memory­data trade­off and dis­

tinguishing attacks. We have also suggested ways to protect software implementations

of the RCR ciphers against (cache­)timing and some prominent processor flag attacks.

We have also presented the performance evaluation of the ciphers, which proves that the

protected implementation of the RCR­64 encrypts long messages at speeds comparable

to some of the fastest stream ciphers available today. Our results highlight that the RCR

ciphers may be well suited for PC­based applications in general and streaming audio /

video applications in particular.

7.2 Future Research

To conclude this Chapter, we list some problems for future work that arise in connection

with the topics discussed in this thesis.



CLOSING REMARKS 153

Cryptanalysis. The design methodologies of cryptographic algorithms and the attack

techniques to counter them are continuously evolving. The healthy conflicts between

cryptographers and cryptanalysts open up a never­ending space of research problems.

Since the start of this doctoral research, several new symmetric­key algorithms have

been designed. Notable examples include the finalists of the NIST’s lightweight

cryptography standardisation process such as ASCON [74], Elephant [271], GIFT­

COFB [272], Grain128­AEAD [77], ISAP [273], Photon­Beetle [274], Romulus

[275], Sparkle [276], TinyJambu [277], and Xoodyak [278]. New or improved attacks

on these authenticated encryption algorithms would be well­received by the community.

Processor flag attacks. The implementation of a symmetric­key algorithm in software

can affect various processor flags — not limited to carry and overflow flags —

depending on the underlying operations it performs. Therefore, exploring ways to

exploit different flags to attack cryptographic implementations makes an interesting

topic for future research. Despite being introduced about 20 years ago, this class of

side­channel attacks seems to have received less attention. To evaluate the impact of

these attacks, the study of side­channel techniques used to obtain processor flags calls

for more attention.

Protected implementations. The study of different techniques that can be used to

protect cryptographic implementations from side­channel attacks is another useful

direction to proceed. It would also be worthwhile to build secure implementations of

some of the popular symmetric­key algorithms using these techniques and evaluate

their performances.

Design of lightweight cryptographic algorithms. Lightweight symmetric­key ciphers

are gaining popularity due to their use in constrained pervasive devices, and many new

designs have been proposed recently. As mentioned earlier, NIST is in the process of
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identifying a lightweight authenticated encryption standard. Considering its present

stature, the study and development of lightweight primitives would be an interesting

direction to proceed.
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