PERIOD-INDEX PROBLEM FOR HYPERELLIPTIC CURVES

J. N. IYER AND R. PARIMALA

with an appendix by S. RAMANAN

ABSTRACT. Let C be a smooth projective curve of genus 2 over a number field kwith a rational point. We prove that the index and exponent coincide for elements in the 2-torsion of $\operatorname{III}(Br(C))$. In the appendix, an isomorphism of the moduli space of rank 2 stable vector bundles with odd determinant on a smooth projective hyperelliptic curve C of genus g with a rational point over any field of characteristic not two with the Grassmannian of (q-1)-dimensional linear subspaces in the base locus of a certain pencil of quadrics is established, making a result of ([10]) rational. We establish a twisted version of this isomorphism and we derive as a consequence a weak Hasse principle for the smooth intersection X of two quadrics in \mathbb{P}^5 over a number field: if X contains a line locally, then X has a k-rational point.

Let k be a field and Br(k) the Brauer group of k. There are two numerical invariants attached to a Brauer class $\alpha \in Br(k)$; $index(\alpha) = \sqrt{[D:k]}$ if α is represented by a central division algebra D over k and $period(\alpha) = order of \alpha$ in Br(k). There has been extensive study of uniform bounds for index of algebras in terms of their periods over fields which are of arithmetic or geometric interest ([9], [17], [32], [15]). Let pbe a prime and K a field of characteristic not equal to p. The Brauer p-dimension of K denoted by $\operatorname{Br}_{p}\operatorname{dim}(K)$ is the least integer d such that for every finite extension L/K and every $\alpha \in {}_{p}\operatorname{Br}(L)$, index (α) divides p^{d} . Here ${}_{p}\operatorname{Br}(L)$ denotes the p-torsion subgroup of Br(L).

Bounding Brauer dimension has deep consequences in the study of homogeneous spaces under connected linear algebraic groups. A theorem of de-Jong/Lieblich that period = index for function fields of surfaces over algebraically closed fields is critical to the solution of Conjecture II of Serre for exceptional groups of type D_4 , E_6 , E_7 due to Gille ([13, IV.2]). Bounding the Brauer 2-dimension of function fields of all curves over totally imaginary number fields would lead to finiteness of the u-invariant of such fields (|20|). Finiteness of the *u*-invariant of k(t), k totally imaginary number field, is an open question.

Let k be a totally imaginary field with the ring of integers \mathscr{O} . Let C/k be a smooth projective geometrically integral curve over k with \mathscr{C}/\mathscr{O} a regular proper model. In ([20]), finiteness of $\operatorname{Br}_p \dim(k(C))$ for all C/k is reduced to bounding indices of p-torsion elements in $Br(\mathscr{C})$, i.e. 'unramified elements' in Br(k(C)), for all C/k. By a theorem of Grothendieck, for a smooth projective curve C over k, the image of $Br(\mathscr{C})$ is zero in $Br(k_{\nu}(C))$ for every finite place ν of k. Let III Br(k(C)) = $Ker(H^2(k(C), \mathbb{G}_m) \to \prod_{\nu \in \Omega_K} H^2(k_{\nu}(C), \mathbb{G}_m))$. Note that $\operatorname{III} \operatorname{Br}(k(C)) \subseteq \operatorname{Br}(\mathscr{C}) \subseteq \operatorname{Br}(\mathscr{C})$ ([29]) and $\operatorname{III} \operatorname{Br}(k(C)) = \operatorname{Br}(\mathscr{C})$ if k is a totally imaginary number field. We state the following conjecture concerning the period/index bounds for elements in $\operatorname{III} \operatorname{Br}(k(C))$:

Conjecture. For elements in $\coprod Br(k(C))$, the index and period coincide.